We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

By LabMedica International staff writers
Posted on 13 Nov 2024
Print article
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly monitor the concentration of these drugs in their bodies. However, the current diagnostic technologies used in hospitals for this purpose face challenges in terms of both accuracy and time efficiency. The most widely used method, immunoassay, is prone to cross-reactions with similar drugs, which lowers diagnostic accuracy. While mass spectrometry, which ionizes samples using electrospray, offers greater accuracy, it is time-consuming and expensive, creating additional burdens for patients. To address these limitations, researchers have developed a novel diagnostic and treatment system based on nanomaterials for therapeutic drug monitoring (TDM) in epilepsy patients. This approach promises to significantly reduce the time and cost of current diagnostics while maintaining accuracy, ultimately easing the burden on patients managing their condition.

This innovative nanomaterial-based diagnostic method was developed by scientists at the Korea Research Institute of Standards and Science (KRISS, Daejeon, South Korea), in collaboration with domestic university hospitals. By incorporating a mixture of molybdenum ditelluride (MoTe2) and tungsten ditelluride (WTe2) nanosheets into the sample and ionizing it with a laser, the researchers were able to enhance both the speed and sensitivity of drug detection. When applied to samples from 120 epilepsy patients, the technology demonstrated over 99.9% reliability, while reducing the analysis time to just one-sixteenth of the original. Furthermore, the number of samples that could be analyzed in a single session increased more than tenfold, potentially cutting diagnostic costs by half.

Related Links:
KRISS

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest
New
Herpes Simplex Virus ELISA
HSV 2 IgG – ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: QIP-MS could predict and detect myeloma relapse earlier compared to currently used techniques (Photo courtesy of Adobe Stock)

Mass Spectrometry-Based Monitoring Technique to Predict and Identify Early Myeloma Relapse

Myeloma, a type of cancer that affects the bone marrow, is currently incurable, though many patients can live for over 10 years after diagnosis. However, around 1 in 5 individuals with myeloma have a high-risk... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.