We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Innovative Device Measures Glucose in Saliva for More Convenient Diabetes Monitoring

By LabMedica International staff writers
Posted on 30 Aug 2023
Print article
Image: The new sensor can measure glucose levels in saliva (Photo courtesy of KAUST)
Image: The new sensor can measure glucose levels in saliva (Photo courtesy of KAUST)

Diabetes arises when the body fails to regulate its blood glucose levels. Elevated glucose levels can lead to cardiovascular disease and other ailments, making it essential for individuals with diabetes to keep their blood glucose within moderate ranges. The conventional method for monitoring blood glucose in people with diabetes involves using devices that analyze a droplet of blood obtained through finger pricking multiple times daily. Recently, implanted sensors have enabled continuous glucose monitoring without the discomfort of pinpricks, but these devices might be less accurate for lower glucose levels and are not approved for children. A more convenient alternative could be salivary testing, as saliva correlates with blood glucose levels. However, glucose concentrations in saliva are much lower than in blood, posing challenges for accurate measurement without advanced laboratory equipment.

Researchers at King Abdullah University of Science and Technology (KAUST, Saudi Arabia) have now created a prototype sensor capable of measuring glucose levels in saliva. This innovation could eventually offer a simple, swift, and painless way for individuals to monitor their diabetes. The KAUST team devised a remarkably sensitive glucose detector built on a thin-film transistor. These compact, lightweight, and energy-efficient devices could be produced en masse as affordable disposable sensors. The transistor features thin layers of semiconductors, including indium oxide and zinc oxide, along with the enzyme glucose oxidase on top. When a saliva sample is applied to the sensor, the enzyme converts any glucose present into D-gluconolactone and hydrogen peroxide. The electrical oxidation of hydrogen peroxide generates electrons that enter the semiconductor layers, modifying the current flowing through the semiconductors. This change reflects the glucose concentration in the sample.

The researchers evaluated their device using human saliva samples with varying glucose levels and also analyzed saliva from fasting volunteers (since saliva glucose levels might not align with blood glucose levels immediately after eating). They discovered that the device accurately measured a broad range of glucose concentrations in under a minute. Importantly, the sensor remained unaffected by other molecules in saliva, including sugar derivatives like fructose and sucrose. Although the device's sensitivity decreased over time, it maintained good performance even after two weeks of storage at room temperature. The team is presently working on an array of transistor sensors that could simultaneously detect multiple metabolites in saliva.

“An easy-to-use noninvasive glucose-measuring device using saliva as a medium could be life-changing for millions of patients worldwide,” said research team member Abhinav Sharma.

“The development of portable sensor arrays that can be integrated with a smartphone is a potential future direction for research,” added Thomas Anthopoulos, who led the research team.

Related Links:
KAUST 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Specimen Collection & Transport
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Reagent Reservoirs
Reagent Reservoirs

Print article

Channels

Molecular Diagnostics

view channel
Image: A simple method can predict risk of worsening of widespread kidney disease (Photo courtesy of 123RF)

Simple Measurement Predicts Risk of Rapid Progression of Chronic Kidney Disease

Chronic kidney disease (CKD) is increasingly becoming a major health issue worldwide. For those diagnosed with CKD, the rate of disease progression can vary, with some individuals experiencing a rapid... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Pathology

view channel
Image: The photoacoustic spectral response sensing instrument is based on low-cost laser diodes (Photo courtesy of Khan et al., doi 10.1117/1.JBO.29.1.017002)

Compact Photoacoustic Sensing Instrument Enhances Biomedical Tissue Diagnosis

The pursuit of precise and efficient diagnostic methods is a top priority in the constantly evolving field of biomedical sciences. A promising development in this area is the photoacoustic (PA) technique.... Read more

Industry

view channel
Image: The companies will develop genetic testing systems based on capillary electrophoresis sequencers (Photo courtesy of 123RF)

Sysmex and Hitachi Collaborate on Development of New Genetic Testing Systems

Sysmex Corporation (Kobe, Japan) and Hitachi High-Tech Corporation (Tokyo, Japan) have entered into a collaboration for the development of genetic testing systems using capillary electrophoresis sequencers... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.