We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




World’s Smallest LED Converts Mobile Phone Camera into High-Resolution Microscope

By LabMedica International staff writers
Posted on 05 May 2023
Print article
Image: Researchers have created the world’s smallest LED and holographic microscope (Photo courtesy of SMART)
Image: Researchers have created the world’s smallest LED and holographic microscope (Photo courtesy of SMART)

A team of researchers at Singapore-MIT Alliance for Research and Technology (SMART, Singapore) has successfully created the world's tiniest LED. This miniaturized LED is smaller than the wavelength of light, but with a light intensity equivalent to much larger, state-of-the-art Si LEDs and has the capability to transform existing mobile phone cameras into high-resolution microscopes. This was achieved simply by making changes to the silicon chip and the software. The researchers also developed a groundbreaking neural networking algorithm that can reconstruct objects measured by the holographic microscope. This innovation allows for a detailed examination of microscopic organisms such as cells and bacteria without the requirement for large, conventional microscopes or additional optics.

The LED developed by the SMART team is a CMOS-integrated sub-wavelength scale LED at room temperature demonstrating high spatial intensity (102 ± 48 mW/cm2) and having the smallest emission area (0.09 ± 0.04 μm2) among all known Si emitters in scientific literature. The researchers illustrated a practical application of this LED by integrating it into an in-line, centimeter-scale, all-silicon holographic microscope requiring no lens or pinhole, integral to a field known as lens-less holography. The research team also developed an untrained deep neural network architecture to enhance image reconstruction quality by incorporating total variation regularization for increased contrast and taking into account the wide spectral bandwidth of the source.

Unlike conventional computational reconstruction methods requiring training data, this neural network does away with the need for training by incorporating a physics model into the algorithm. Alongside holographic image reconstruction, the neural network also enables blind source spectrum recovery from a single diffracted intensity pattern. This represents a significant departure from all previous supervised learning techniques. The researchers envision that the potent combination of CMOS micro-LEDs and the neural network could be beneficial in other computational imaging applications. For instance, they could be used in a compact microscope for live-cell tracking or spectroscopic imaging of biological tissues such as living plants.

“Our breakthrough represents a proof of concept that could be hugely impactful for numerous applications requiring the use of micro-LEDs,” said Iksung Kang, lead author and Research Assistant at MIT. “For instance, this LED could be combined into an array for higher levels of illumination needed for larger-scale applications. In addition, due to the low cost and scalability of microelectronics CMOS processes, this can be done without increasing the system’s complexity, cost, or form factor. This enables us to convert, with relative ease, a mobile phone camera into a holographic microscope of this type. Furthermore, control electronics and even the imager could be integrated into the same chip by exploiting the available electronics in the process, thus creating an ‘all-in-one’ micro-LED that could be transformative for the field.”

“On top of its immense potential in lens-less holography, our new LED has a wide range of other possible applications,” added Rajeev Ram, Principal Investigator at SMART CAMP and DiSTAP, Professor of Electrical Engineering at MIT. “Because its wavelength is within the minimum absorption window of biological tissues, together with its high intensity and nanoscale emission area, our LED could be ideal for bio-imaging and bio-sensing applications, including near-field microscopy and implantable CMOS devices.”

Related Links:
SMART

Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
New
Gold Member
Strep Pneumoniae Rapid Test
Strep Pneumoniae (6503 – 6573)
New
Echinococcus Granulosus Assay
Echinococcus Granulosus IgG ELISA
New
Moxifloxacin Resistance Assay
Allplex MG & MoxiR Assay

Print article

Channels

Microbiology

view channel
Image: The breakthrough system offers a faster way to diagnose bloodborne infections (Photo courtesy of Melio)

Culture-Free Platform Rapidly Identifies Blood Stream Infections

Neonatal sepsis is a life-threatening condition that results from bloodstream infections in newborns under 28 days old. Due to their immature immune systems, newborns are especially vulnerable to infections.... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more

Industry

view channel
Image: The game-changing immunoassay diagnostics platform delivers results from whole blood sample in 10 minutes (Photo courtesy of SpinChip)

bioMérieux Acquires Norwegian Immunoassay Start-Up SpinChip Diagnostics

bioMérieux (Marcy l’Étoile, France) has agreed to acquire SpinChip Diagnostics (Oslo, Norway), the developer of a game-changing immunoassay diagnostics platform. The small benchtop analyzer is well adapted... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.