We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Electronic Nose Technology May Facilitate Accurate Diagnosis of Sarcoidosis

By LabMedica International staff writers
Posted on 12 Apr 2022
Print article
Image: The SpiroNose (generic name: “eNose”) linked to the online BreathBase platform analyzes the mixture of volatile organic compounds (VOCs) in exhaled breath in real-time based on advanced signal processing and an extensive online reference database, infused with AI (Photo courtesy of Breathomix)
Image: The SpiroNose (generic name: “eNose”) linked to the online BreathBase platform analyzes the mixture of volatile organic compounds (VOCs) in exhaled breath in real-time based on advanced signal processing and an extensive online reference database, infused with AI (Photo courtesy of Breathomix)

Sarcoidosis is a granulomatous inflammatory disease without a known cause that can affect roughly any organ. The lungs are involved in the vast majority of patients (89% to 99%). Diagnosis can be challenging because no standardized diagnostic procedure exists. The three major criteria for diagnosis are compatible clinical features, pathology tissue assessment, and exclusion of other granulomatous diagnoses.

Breath biomarkers are increasingly studied in respiratory diseases, as exhaled volatile organic compounds (VOCs) reflect pathophysiological processes in the human body. Techniques such as gas chromatography and mass spectrometry can be used to identify individual VOCs, but are time-consuming and complex. Analysis of a profile of VOCs (a “breathprint”) using electronic nose (eNose) technology will be of added value in clinical practice.

Respiratory Medicine Specialists at the Erasmus Medical Center (Rotterdam, The Netherlands) included in cross-sectional study 252 patients with sarcoidosis (mean age, 53.1 years; 53.2% men), 317 with interstitial lung disease (ILD, mean age, 70 years; 61.5% men), and 48 healthy control subjects (mean age, 36.5 years; 31.3% men). The SpiroNose (Breathomix, Leiden, The Netherlands) was used for exhaled breath analysis. Participants were instructed to perform five tidal breaths, followed by an inhalation to total lung capacity, a 5 second breath hold, and a slow expiration. To explore if breathprints correlate with disease activity, the soluble interleukin-2 receptor (sIL-2R) level was used as a marker for activity. In the laboratory, an sIL-2R value ≤ 550 U/mL was considered normal.

The team reported that eNose distinguished sarcoidosis from control subjects with an area under the curve (AUC) of 1.00 and pulmonary sarcoidosis from other ILD (AUC, 0.87) and hypersensitivity pneumonitis (AUC, 0.88). Exhaled breath of sarcoidosis patients with and without pulmonary involvement, pulmonary fibrosis, multiple organ involvement, pathology-supported diagnosis, and immunosuppressive treatment revealed no distinctive differences. Breath profiles differed between patients with a slightly and highly elevated soluble IL-2 receptor level (median cutoff, 772.0 U/mL; AUC, 0.78).

Iris G. van der Sar, MD, the lead author of the study, said, “Currently, diagnosis of sarcoidosis is challenging due to great differences in clinical presentation often requiring invasive diagnostic procedures such as biopsies. The accuracy of eNose technology is much higher than for other diagnostic tests used in clinical practice for sarcoidosis patients. Building a diagnostic algorithm will allow doctors to use the eNose technology in clinical decision-making in the future.”

The authors concluded that their study showed a reliable and accurate differentiation of patients with sarcoidosis from patients with ILD and healthy control subjects, based on eNose data. The results confirm the potential of eNose technology as a noninvasive diagnostic tool to obtain an early, accurate sarcoidosis diagnosis and reduce the number of invasive diagnostic procedures in the diagnostic trajectory. The study was published on March 1, 2022 in the journal Chest.

Related Links:
Erasmus Medical Center 
Breathomix 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.