Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Low-Cost Diagnostic Developed Using Nanostructures

By LabMedica International staff writers
Posted on 25 Oct 2018
The detection of pathogen nucleic acids has broad applications in infection diagnostics and management. More...
Nucleic acid-based human papillomavirus (HPV) testing is essential to contemporary cervical cancer testing. HPV, the most common sexually transmitted infection, is the primary cause of cervical cancer.

A rapid pathogen detection platform has been developed that uses microfluidics containing integrated circuits of DNA nanostructures. The system called enzyme-assisted nanocomplexes for visual identification of nucleic acids, or enVision, has been shown to be capable of room temperature molecular typing of HPV from cervical samples, as well as discovering certain infections that can be undetectable by most standard methods.

Scientists at the National University of Singapore (Singapore) developed the DNA-enzyme nanostructures, which are complexes made of inactivating aptamers linked to Taq DNA polymerase. When complementary target DNA binds an aptamer, the polymerase is released. The freed polymerases then use biotinylated deoxyribonucleotide triphosphates (dNTPs) circulating in the microfluidic cassette to elongate a nearby signaling nanostructure made from a self-priming hairpin molecule.

The biotinylated dNTPs in the signaling structure will also bind streptavidin-horseradish peroxidase (HRP) molecules in the reaction chamber, and in the presence of diaminobenzidine peroxidase the HRP produces a brown precipitate that can be seen with the naked eye or quantified with a smartphone. The system is also modular. Detection reactions take place in an independent microfluidic assay cassette that is preloaded with nanostructures. In order to perform the assay, a test cassette is mounted to a separate cartridge module that is the same for all tests, containing membranes embedded with the universal signaling nanostructures.

The enVision test was also run on a set of 35 clinical endocervical samples in the study and compared to a gold standard test, the Roche Cobas qPCR-based HPV assay. The authors set up enVision to detect HPV 16 and HPV 18 L1 loci in the patient genome, which are the targets of the Roche test. EnVision achieved about 93% sensitivity and 91% specificity for HPV 16, and for HPV 18 the assay showed 83% sensitivity and 100% specificity compared to the Cobas test. Notably, this level of sensitivity and specificity on clinical samples was seen without any pre-amplification, in an equipment-free assay performed at room temperature.

Compared to quantitative polymerase chain reaction (qPCR), enVision showed better sensitivity and fewer false-positive results on a set of synthetic targets representing different subtypes of HPV. The team highlighted that qPCR can be prone to false positives due to non-specific amplification and formation of primer dimers, which, in a clinical setting, can lead to misdiagnoses, wrong or delayed treatments, and patient anxiety and poor health outcomes. The team also compared enVision to a loop-mediated isothermal amplification (LAMP) test and observed that LAMP is prone to primer-dimer formation and false-positive results. The study was originally published online on August 13, 2018, in the journal Nature Communications.

Related Links:
National University of Singapore


New
Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Laboratory Software
ArtelWare
New
ESR Analyzer
TEST1 2.0
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Pathology

view channel
image: Researchers Marco Gustav (right) and MD Nic G. Reitsam (left) discuss the study data (Photo courtesy of Anja Stübner/EKFZ)

AI Model Simultaneously Detects Multiple Genetic Colorectal Cancer Markers in Tissue Samples

Colorectal cancer is a complex disease influenced by multiple genetic alterations. Traditionally, studies and diagnostic tools have focused on predicting only one mutation at a time, overlooking the interplay... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.