We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Lab-on-a-Chip Nanotechnology Tracks Multiple Markers

By LabMedica International staff writers
Posted on 03 Jul 2017
Research engineers have invented a technology for nanoelectronic barcoding of microparticles that could be used in wearable or hand-held devices to analyze body fluids, such as sweat or blood, for various biomarkers or pollutants simultaneously.

The team, led by Mehdi Javanmard, assistant professor at Rutgers University-New Brunswick (New Brunswick, NJ), invented the biosensor technology to better monitor health and exposure to pathogenic microorganisms as well as to pollutants.

“This is really important in the context of personalized medicine or personalized health monitoring,” said Prof. More...
Javanmard, “Our technology enables true labs on chips. We’re talking about platforms the size of a USB flash drive or something that can be integrated [into a fitness watch].”

In recent decades, research on biomarkers has revealed the complex nature of the molecular mechanisms behind human disease. That has heightened the importance of testing bodily fluids for numerous biomarkers simultaneously, the authors said.
“One biomarker is often insufficient to pinpoint a specific disease because of the heterogeneous nature of various types of diseases,” said Prof. Javanmard, “To get an accurate diagnosis and accurate management of various health conditions, you need to be able to analyze multiple biomarkers at the same time.”

Bulky optical instruments are the state-of-the-art technology for detecting and measuring biomarkers, but are too large to add to a portable device. Electronic detection of microparticles allows for ultra-compact instruments needed for wearable devices. The researchers’ technique for barcoding particles to identify them is, for the first time, fully electronic, allowing biosensors to be shrunk to the size of a wearable band or a microchip, the authors said.

The technology was greater than 95% accurate in identifying tested biomarkers, and fine-tuning is underway to make it 100% accurate, said Prof. Javanmard. The team is also working on portable detection of microrganisms, including pathogenic bacteria and viruses. “Imagine a small tool that could analyze a swab sample of what’s on the doorknob of a bathroom or front door and detect influenza or a wide array of other virus particles,” he said, “Imagine ordering a salad at a restaurant and testing it for E. coli or Salmonella bacteria.” This form of the tool could be commercially available within about two years, while health monitoring and diagnostic tools could be available within about five years, he said.

The study, by Xie P et al, was published April 28, 2017, in the journal Lab on a Chip.

Related Links:
Rutgers University-New Brunswick


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Collection and Transport System
PurSafe Plus®
Gram-Negative Blood Culture Assay
LIAISON PLEX Gram-Negative Blood Culture Assay
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: When assessing the same lung biopsy sample, research shows that only 18% of pathologists will agree on a TCMR diagnosis (Photo courtesy of Thermo Fisher)

Molecular Microscope Diagnostic System Assesses Lung Transplant Rejection

Lung transplant recipients face a significant risk of rejection and often require routine biopsies to monitor graft health, yet assessing the same biopsy sample can be highly inconsistent among pathologists.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.