We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Immunoassay Device Based on Acoustic Vortex Nanoparticle Enrichment

By LabMedica International staff writers
Posted on 08 Feb 2017
An inexpensive acoustic transducer is the key to a novel immunoassay that may eventually be combined with a smartphone camera to form a platform for the rapid detection of diagnostic proteins in blood, urine, or saliva samples.

Investigators at Duke University developed an acoustic-fluidic chip capable of generating single vortex acoustic streaming inside a glass capillary through using low-power acoustic waves (only five volts was required). More...
The single vortex acoustic streaming that was generated, in conjunction with the acoustic radiation force, was able to enrich submicrometer- and nanometer-sized particles in a small volume. Numerical simulations were used to clarify the mechanism of the single vortex formation and were verified experimentally, demonstrating the focusing of silica and polystyrene particles ranging in diameter from 80 to 500 nanometers.

In a proof-of-principle study, the acoustic-fluidic chip was used to perform an immunoassay in which nanoparticles that captured fluorescently labeled biomarkers were concentrated in a long, thin glass vial to enhance the emitted signal.

“Diagnosis impacts about 70% of healthcare decisions,” said senior author Dr. Tony Huang, professor of mechanical engineering and materials science at Duke University. “If we can improve the quality of diagnostics while reducing its costs, then we can tremendously improve the entire healthcare system. My goal is to create a small diagnostic device about the size of a cell phone that can autonomously separate biomarkers from samples. With this vortex technology, the biomarkers could then be concentrated enough to see with a simple camera like the ones found in today’s cellular phones.”


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Sperm Quality Analyis Kit
QwikCheck Beads Precision and Linearity Kit
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: AI models combined with DOCI can classify thyroid cancer subtypes (Photo courtesy of T. Vasse et al., doi 10.1117/1.BIOS.3.1.015001)

AI-Powered Label-Free Optical Imaging Accurately Identifies Thyroid Cancer During Surgery

Thyroid cancer is the most common endocrine cancer, and its rising detection rates have increased the number of patients undergoing surgery. During tumor removal, surgeons often face uncertainty in distinguishing... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.