We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Identification of Single Biomolecules Could Soon Be Even Faster

By LabMedica International staff writers
Posted on 08 Feb 2016
Scientists have developed a breakthrough new method that may soon enable the capture of individual biological molecules 1,000 times faster, leading to more efficient research and diagnostic detection for important medical conditions.

Gathering and identifying molecules for analysis can be done by passing molecules in solution through a nanopore and detecting the change in electric current the molecules create. More...
The problem with this technique, “nanopore sensing,” is that it is usually diffusion-limited, and so relies on molecules drifting close to the nanopore before being captured.

Now, a team led by researchers at Imperial College London (London, UK) in collaboration with colleagues at University of Minnesota (Minneapolis – St. Paul; MN; USA) have demonstrated a technique to attract molecules towards the nanopore, making the process up to 1,000 times more efficient.

“By pulling molecules towards the detector instead of relying purely on diffusion, we can access a much larger volume, and by doing so can detect the same number of molecules from a much smaller concentration,” said senior author Dr. Joshua Edel from Imperial, “What might currently take 5 hours to analyze could be done in a couple of minutes with our new method.”

The technique, “single molecule dielectrophoretic trapping,” will also allow for analysis of very dilute samples. Capability to analyze molecules in low-concentration samples could be particularly important when looking for evidence of epigenetic modifications such as DNA methylation. The team tested their method with DNA molecules, but said it could be modified to detect a wide range of medically important molecules, from proteins to whole cells.

The technique uses an electrically-charged nano-pipette that exerts an electrical attraction force on the molecule that draws it close to the pipette tip, the nanopore. The shape and minute size of the tip, less than 50 nanometres, enables detection of single molecules.

Detecting and analyzing each molecule individually also avoids the problem of averaged results that obscure rare, but possibly important, events. “We can now capture needle-in-a-haystack events,” said coauthors Dr. Aleksandar Ivanov and Dr. Kevin Freedman of Imperial. “The huge increase in efficiency brought about by this technique paves the way for high-speed and high-throughput detection of rare events in ultra-dilute samples.” The team has filed a patent for their invention and expect that it will have application implications in the near future.

The study, by Freedman KJ et al., was published 2016, in the journal Nature Communications.

Related Links:

Imperial College London
University of Minnesota



Gold Member
Veterinary Hematology Analyzer
Exigo H400
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Toxoplasma Gondii Test
Toxo IgG ELISA
New
Whole Blood Control
Lyphochek Whole Blood Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Gut microbes may help in recognizing and treating pancreatic cancer (Photo courtesy of Adobe Stock)

Gut Microbes Could Enable Early Detection and Treatment of Pancreatic Cancer

Pancreatic cancer remains one of the most serious and challenging diseases in oncology due to its difficulty in detection and limited treatment options. Now, a new international collaborative study suggests... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Microbiology

view channel
Image: The U.S. FDA-cleared IntelliSep rapid host response diagnostic represents a breakthrough in sepsis care (Photo courtesy of Cytovale)

Rapid Diagnostic Test Slashes Sepsis Mortality by 39%

Sepsis remains one of the most challenging and fatal conditions in contemporary healthcare, accounting for nearly one-third of all hospital-related deaths in the United States. In emergency departments... Read more

Industry

view channel
Image: The knowledge transfer partnership will further develop technology to rapidly diagnose serious and high-risk infectious diseases (Photo courtesy of Aston University)

Aston University and BG Research Partner to Commercialize Groundbreaking Medical Diagnostic

Technology that can rapidly diagnose high-consequence infectious diseases will take a major step forward towards commercialization, thanks to a new partnership. A Knowledge Transfer Partnership (KTP)... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.