We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Genetic Tool Analyzes Umbilical Cord Blood to Predict Future Disease

By LabMedica International staff writers
Posted on 29 Apr 2025

Children are experiencing metabolic problems at increasingly younger ages, placing them at higher risk for serious health issues later in life. More...

There is a growing need to identify this risk from birth to enable preventative measures. Now, the umbilical cord may serve as a tool for doctors to predict which children are more likely to face long-term health problems, such as diabetes, stroke, and liver disease. DNA changes found in cord blood could provide early insights into which infants are at higher risk, paving the way for earlier and potentially life-saving interventions, according to research presented at Digestive Disease Week (DDW) 2025.

Researchers at Duke University Health System (Durham, NC, USA) utilized a novel genetic tool to analyze umbilical cord blood from 38 children who were part of the Newborn Epigenetics Study, a long-term birth cohort study. They focused on identifying changes in chemical tags—known as methyl groups—on the infants’ DNA that regulate gene activity. When these changes occur in critical areas of DNA, called imprint control regions, their effects can persist from fetal development into later life. The research team then compared the DNA changes with health data collected when the children reached ages 7 to 12. This data included body mass index, liver fat levels, alanine transaminase (ALT) — a marker of liver inflammation or damage, triglyceride levels, blood pressure, and waist-to-hip ratio.

The team identified several DNA regions where changes were linked to metabolic dysfunction later in childhood. For instance, alterations in the TNS3 gene were associated with liver fat, ALT levels, and waist-to-hip ratio, while changes in genes such as GNAS and CSMD1 were linked to blood pressure, waist-to-hip ratio, and ALT. Although the sample size was small, the researchers believe the findings are promising and warrant further exploration. A larger follow-up study is already underway. While these findings do not establish a direct cause-and-effect relationship between the genetic changes and disease, they highlight potential biological pathways that warrant further investigation.

“These epigenetic signals are laid down during embryonic development, potentially influenced by environmental factors such as nutrition or maternal health during pregnancy,” said co-author Cynthia Moylan, MD, associate professor of medicine, division of gastroenterology, at Duke University Health System. “If validated in larger studies, this could open the door to new screening tools and early interventions for at-risk children.”


New
Gold Member
Cardiovascular Risk Test
Metabolic Syndrome Array I & II
Serological Pipet Controller
PIPETBOY GENIUS
New
HBV DNA Test
GENERIC HBV VIRAL LOAD VER 2.0
New
Alcohol Testing Device
Dräger Alcotest 7000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








DIASOURCE (A Biovendor Company)

Channels

Hematology

view channel
Image: The microfluidic device for passive separation of platelet-rich plasma from whole blood (Photo courtesy of University of the Basque Country)

Portable and Disposable Device Obtains Platelet-Rich Plasma Without Complex Equipment

Platelet-rich plasma (PRP) plays a crucial role in regenerative medicine due to its ability to accelerate healing and repair tissue. However, obtaining PRP traditionally requires expensive centrifugation... Read more

Immunology

view channel
Image: The 3D paper-based analytical device has shown high clinical accuracy for adult-onset immunodeficiency (Photo courtesy of National Taiwan University)

Paper-Based Device Accurately Detects Immune Defects in 10 Minutes

Patients with hidden immune defects are especially vulnerable to severe and persistent infections, often due to autoantibodies that block interferon-gamma (IFN-γ), a key molecule in immune defense.... Read more

Pathology

view channel
Image: Researchers have developed a novel method to analyze tumor growth rates (Photo courtesy of Adobe Stock)

Novel Method To Analyze Tumor Growth Rates Helps Tracks Progression Between Diagnosis and Surgery

Patients diagnosed with breast cancer often worry about how quickly their tumors grow while they wait for surgery, and whether delays in treatment might allow the disease to spread beyond the point of cure.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.