We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




AI Model Excels at Analyzing Diverse Cancer Types and Unseen IHC Data

By LabMedica International staff writers
Posted on 18 Dec 2024

Immunohistochemistry (IHC) plays a crucial role in oncology, allowing pathologists to detect and quantify protein expression, which informs decisions for systemic therapy. More...

Despite the existence of several AI algorithms to assist in scoring IHC images and improving diagnostic accuracy, current AI models face significant challenges, including data dependency and a lack of generalization. These AI-IHC models require large datasets of immunostain-specific images for training, which are often difficult to obtain, especially for newly developed immunostain-target pairs. Furthermore, these models struggle to analyze datasets that differ from their training set in terms of immunostain or cancer types, limiting their effectiveness across diverse clinical indications. These limitations highlight the need for scalable AI solutions capable of providing accurate analysis across a broad range of cancer types and immunostains. A new study has now demonstrated how an artificial intelligence (AI) model can excel at analyzing diverse cancer types and IHC stains, including datasets it had never previously encountered, due to an innovative training approach.

Lunit (Seoul, South Korea) has developed the Universal Immunohistochemistry (uIHC) AI model, now commercialized as Lunit SCOPE uIHC, which enables advanced biomarker analysis from even singleplex IHC, including subcellular stain localization, continuous intensity scoring, and cell type identification. In a study, Lunit compared eight deep learning models, including four single-cohort models (trained using data from a single stain or cancer type) and four multi-cohort models (trained on datasets that span multiple stains and cancer types), to assess their performance on both familiar and unseen datasets. The results, published in npj Precision Oncology, demonstrated that the uIHC model can generalize across diverse datasets with high accuracy.

The findings underscore the model's strong performance across a wide array of cancer types and immunostains, including those it had not been trained on. The uIHC model’s ability to generalize across different IHC images represents a significant advancement in digital pathology. By reducing the need for large, stain-specific datasets, this model facilitates scalable and efficient biomarker analysis, which is crucial for clinical diagnostics and drug development. This capability is particularly beneficial in evaluating new biomarkers related to emerging therapies, helping to address a major bottleneck in precision oncology.

"Our Universal Immunohistochemistry AI model solves a practical bottleneck in development settings—handling unseen cancer types and stains without requiring additional data annotation," said Brandon Suh, CEO of Lunit. "By proving the effectiveness of a multi-cohort training approach, this study shows how AI can be adapted to real-world complexities, delivering both precision and scalability. With the launch of Lunit SCOPE uIHC, we're enabling researchers and clinicians to focus on what truly matters: advancing patient care and accelerating therapeutic innovation."

Related Links:
Lunit


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Portable Electronic Pipette
Mini 96
Gold Member
Automatic Hematology Analyzer
DH-800 Series
New
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more

Microbiology

view channel
Image: The rapid diagnostic test is being piloted across three UK hospitals (Photo courtesy of Imperial College Healthcare)

15-Minute Blood Test Diagnoses Life-Threatening Infections in Children

Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.