We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Mapping of Atherosclerotic Plaque Cells Predicts Future Risk of Stroke or Heart Attack

By LabMedica International staff writers
Posted on 21 Nov 2024

Atherosclerosis is the leading cause of cardiovascular diseases like heart attacks and strokes. More...

Over many years, atherosclerotic plaques develop from the accumulation of blood lipids such as cholesterol in the innermost layer of blood vessels. As these plaques become unstable and rupture, blood clots can form, blocking the vessel or traveling to other organs, like the brain. This blockage prevents oxygen from reaching the tissues, leading to a stroke or heart attack. Mortality rates from cardiovascular disease have decreased over the past 50 years due to advancements in understanding disease mechanisms, improved preventive treatments, better diagnostics, and healthier lifestyle choices. Now, a new study has revealed that genetic traits play a role in determining the cellular makeup of atherosclerotic plaques, which influences the likelihood of these plaques causing strokes or heart attacks over time. This discovery could enhance future risk assessment and treatment strategies for patients with atherosclerosis.

Researchers at Karolinska Institutet (Stockholm, Sweden), along with colleagues, successfully mapped the relationship between genetic factors and the composition of different cell types in atherosclerotic plaques. Their research, published in the European Heart Journal, utilized tissue samples from patients with atherosclerosis, stored in a biobank. The researchers used this genetic data to categorize patients into three distinct groups. The first group, with the most severe profiles, typically includes patients who have already experienced a stroke. The second group consists of patients at lower risk, whose vessels contain plaques but have not resulted in a stroke. The third group falls between the other two and often has kidney disease alongside atherosclerosis.

The team has also found preliminary evidence suggesting that this genetic influence might apply to heart attacks as well. This new understanding of how genetics affect plaque cell composition could be integrated with advanced diagnostic imaging and AI to improve assessments of future stroke or heart attack risks and predict how patients might respond to different treatments. While the researchers have conducted similar studies for smaller cohorts in the past, this concept needs to be validated on a larger scale before it can be used in clinical practice. The team plans to continue working on these multi-modal studies to further develop this approach.

“Previous research has shown that heredity is important for the levels of cholesterol, other lipids and circulating immune cells in the blood, but now we see that heredity also affects the composition of smooth muscle cells in the blood vessels of atherosclerotic patients,” says Ljubica Matic, docent at the Department of Molecular Medicine and Surgery at Karolinska Institutet who led the study. “This can affect the development of atherosclerotic plaques, but also the tendency for the plaques to become unstable and cause a stroke.”


New
Gold Member
Latex Test
SLE-Latex Test
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
New
Slide Scanner
VENTANA DP 600
New
Glucose Tolerance Test
NERL Trutol
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The POC device rapidly predicts neonatal respiratory disease at birth in the NICU (Photo courtesy of SIME Diagnostics)

AI-Powered Lung Maturity Test Identifies Newborns at Higher Risk of Respiratory Distress

Each year, approximately 300,000 babies in the United States are born between 32 and 36 weeks' gestation, according to national health data. This group is at an elevated risk for respiratory distress,... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Technology

view channel
Image: Scanning electron microscopy images showing 3D micro-printed Limacon-shaped whispering-gallery-mode microcavities with different amounts of deformation (Photo courtesy of A. Ping Zhang/PolyU)

Tiny Microlaser Sensors with Supercharged Biosensing Ability to Enable Early Disease Diagnosis

Optical whispering-gallery-mode microlaser sensors function by trapping light within tiny microcavities. When target molecules bind to the cavity, they induce subtle changes in the laser’s frequency, allowing... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.