We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New AI Protocol Instantaneously Detects Cancer Genomic Biomarkers Directly from Tumor Biopsy Slides

By LabMedica International staff writers
Posted on 05 Aug 2024
Print article
Image: The new AI tool can detect clinically actionable genomic alterations directly from biopsy slides (Photo courtesy of UC San Diego Jacobs School of Engineering)
Image: The new AI tool can detect clinically actionable genomic alterations directly from biopsy slides (Photo courtesy of UC San Diego Jacobs School of Engineering)

The late 90s marked the beginning of the era of precision oncology, yet recent studies in the U.S. indicate that most cancer patients are not receiving FDA-approved precision therapies. Factors such as high costs, extensive tissue requirements, and lengthy processing times have hampered the broader adoption of precision oncology, often leading to treatments that are not only suboptimal but potentially harmful. A significant barrier is the lack of testing; many cancer patients endure critical delays waiting for standard genomic tests following an initial tumor diagnosis, which can be life-threatening. Now, a groundbreaking advancement has been made with the development of a new generation of artificial intelligence (AI) tools that enable the rapid and cost-effective detection of clinically actionable genomic alterations directly from tumor biopsy slides. This innovation could cut weeks and save thousands of dollars in clinical oncology treatment workflows for diseases like breast and ovarian cancers.

The new AI protocol, termed DeepHRD, was developed by researchers at the University of California San Diego (La Jolla, CA, USA). It marks a significant leap forward in eliminating the delays and health disparities undermining the potential of precision medicine for cancer patients. The tool leverages minimal patient information available early in the diagnostic process. Almost every cancer patient undergoes a tumor biopsy, which is traditionally processed and reviewed under a light microscope—a method established in the late 19th century and still foundational in early oncology workflows. The DeepHRD AI protocol can be applied directly to standard tissue slides for instant and accurate identification of genomic cancer biomarkers, as detailed in research published in the Journal of Clinical Oncology.

The AI specifically identifies biomarkers for homologous recombination deficiency (HRD), a critical DNA damage repair mechanism loss. Ovarian and breast cancer patients with HRD typically respond well to platinum and PARP (poly-ADP ribose polymerase) inhibitor therapies. This AI model can dramatically expedite treatment decisions immediately following the initial tissue diagnosis, offering a significant time advantage. Unlike traditional genomic testing, which has a failure rate of 20 to 30 percent necessitating re-tests or further invasive biopsies, this AI tool exhibits a virtually zero failure rate.

This technology is poised to democratize access to critical genomic biomarker detection for precision therapy, thus enabling equitable treatment options for advanced cancer patients globally. It holds particular promise for bridging significant gaps in precision medicine, especially in under-resourced or remote areas where such testing is less common. The researchers are now working to rapidly transition this AI platform to clinical settings, aiming to make precision therapy a reality for more patients by providing faster access to appropriate treatments. They anticipate that this technology could eventually apply to a wide range of genomic biomarkers and numerous cancer types.

Gold Member
Turnkey Packaging Solution
HLX
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Metabolic Disorder Test
LIAISON Bone & Mineral Diagnostic Solution
New
Silver Member
Cytomegalovirus Test
ReQuest CMV IgM ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The newly identified biomarkers could reveal risk factors for SIDS (Photo courtesy of 123RF)

Newly Identified Biomarkers to Pave Way for SIDS Screening Test

Approximately 1,300 infants under the age of one die each year from sudden infant death syndrome (SIDS), and researchers still do not fully understand the causes of these unexpected deaths.... Read more

Hematology

view channel
Image: The new platelet-centric scoring system predicts platelet hyperreactivity and related risk of cardiovascular events (Photo courtesy of Shutterstock)

Blood Platelet Score Detects Previously Unmeasured Risk of Heart Attack and Stroke

Platelets, which are cell fragments circulating in the blood, play a critical role in clot formation to stop bleeding. However, in some individuals, platelets can become "hyperreactive," leading to excessive... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Industry

view channel
Image: Roche has expanded its digital pathology open environment with more than 20 AI algorithms (Photo courtesy of Roche)

Roche Expands Digital Pathology Open Environment with Integration of Advanced AI Algorithms from New Collaborators

Roche (Basel, Switzerland) has expanded its digital pathology open environment by integrating over 20 advanced artificial intelligence (AI) algorithms from eight new collaborators. These strategic collaborations... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.