We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Fluorescence Microscopy Combined with AI Enables Detection of Tumors at Early Stage

By LabMedica International staff writers
Posted on 18 Dec 2023

Detecting cancer in the body or monitoring it during therapy is typically a time-consuming process, often conducted in later phases when signs become obvious. More...

Researchers engaged in cancer research are continuously seeking reliable and sensitive techniques to detect a developing tumor at a very early stage and to closely monitor the success or failure of cancer therapy. Therefore, a breakthrough in early cancer diagnosis is a significant advancement. Researchers have now achieved a breakthrough with the development of a test for early diagnosis of cancer.

Researchers at the Paul Scherrer Institute (Würenlingen, Switzerland) have demonstrated that changes in the organization of the cell nucleus of certain blood cells can reliably indicate the presence of a tumor in the body. Using fluorescence microscopy, the team examined the chromatin of these blood cells – DNA packaged into a complex structure. They analyzed about 200 different characteristics, including the external texture, the packing density, and the contrast of the chromatin in lymphocytes or monocytes. They input microscope images from healthy and sick test participants into an artificial intelligence (AI) system and employed “supervised learning” to teach the software known differences.

In the subsequent “deep learning” phase, the algorithm automatically identified differences between “healthy” and “sick” cells that are not discernible to the human eye. This technique enabled the scientists to distinguish between healthy individuals and those with cancer with approximately 85% accuracy. They were also able to correctly identify the type of tumor disease – melanoma, glioma, or head and neck tumor. This new technique, based on blood cell chromatin, is potentially applicable to various cancer types and not just limited to follow-up of proton therapy. It could also be relevant to other forms of therapy, including radiation therapy, chemotherapy, and surgery, although further research is needed to confirm these applications.

“This is the first time anyone, worldwide, has achieved this,” said G.V. Shivashankar, head of PSI‘s Laboratory for Nanoscale Biology who led the research team.

Related Links:
Paul Scherrer Institute


Gold Member
Respiratory Syncytial Virus Test
OSOM® RSV Test
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic Hematology Analyzer
DH-800 Series
Automatic CLIA Analyzer
Shine i9000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: Additional insight into DNA methylation could enable more accurate and precise diagnoses (Photo courtesy of Shutterstock)

Two-in-One DNA Analysis Improves Diagnostic Accuracy While Saving Time and Costs

Diagnosing developmental disorders often relies on DNA sequence analysis, but this approach can miss epigenetic context such as DNA methylation, chemical modifications that regulate whether genes are transcribed.... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

Automated Mass Spectrometry Set to Transform Routine Lab Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.