We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

AGILENT

Agilent provides laboratories worldwide with instruments, services, consumables, applications and expertise, enabling... read more Featured Products: More products

Download Mobile App




Super-Enhancer Induces Oncogenic Driver in Colorectal Carcinoma

By LabMedica International staff writers
Posted on 24 Oct 2022
Print article
Image: Agilent Technologies 2100 Bioanalyzer and DNA chip (Photo courtesy of GMI)
Image: Agilent Technologies 2100 Bioanalyzer and DNA chip (Photo courtesy of GMI)

The etiology of super-enhancer (SE) reprogramming in cancer is incompletely understood, but is widely attributed to cancer cell-intrinsic genomic alterations. Non-coding SE can become focally amplified in multiple malignancies.

Whether the local tumor microenvironment influences the SE landscape of cancer cells is poorly understood. However, the extent this phenomenon recapitulates enhancer reprogramming in cancer is unclear. Furthermore, it is unknown whether environment-induced enhancer changes are mere passenger events or functionally benefit tumor growth.

A large team of Oncological Scientists at the Icahn School of Medicine at Mount Sinai (New York, NY, USA) and their colleagues profiled potential super enhancer sequences in fresh tumor and normal samples from 15 colon cancer patients undergoing surgery, focusing in on recurrent super enhancers that respond to inflammatory cytokines and boost PDZK1IP1 gene expression.

The team used chromatin immunoprecipitation sequencing focused on the histone 3 lysine 27 acetylation (H3K27ac) epigenetic histone modification. Chromatin immunoprecipitation was followed by deep sequencing (ChIP-seq), and DNA was run on an Agilent High Sensitivity DNA chip using an Agilent Technologies 2100 Bioanalyzer (Santa Clara, CA, USA) for quality control. H3K27ac ChIP-seq antibodies were purchased. Sample-matched RNA-seq and H3K27ac ChIP-seq across multiple patient cohorts were utilized to predict SE target genes. Cellular glycolysis was measured using the Agilent XF Glycolysis stress test kit and XP Mitochondrial stress test kit. Cytokine profiling was performed by Eve Technologies using the Human Cytokine Array/Chemokine Array 48-plex platform (Calgary, AB, Canada).

The investigators identified 2,026 total SEs in tumor and normal, which accounted for approximately 50% of the H3K27ac signal, with 95% saturation of unique SE discovery at 10 and 11 patients for adjacent normal and primary colorectal carcinoma (CRC), respectively. H3K27ac deposition at these 2,026 SEs exhibits tissue-of-origin specificity, clustering separately from other malignancies under hierarchical unsupervised analyses when re-processed together with their datasets using the same pipeline. Of the primary specimen enriched SEs, nine SEs were among the top 100 SEs they found to be enriched in primary CRC over patient-matched normal colon.

Ramon E. Parsons, MD, PhD, a Professor of Oncology and senior author of study, said, “What this means for most patients with colon cancer is that inflammation that's occurring in the tumor is contributing to the tumor's growth. This stresses the importance of understanding what we can do to curb the inflammatory effects in the colon through prevention or understanding what dietary effects might have on the microenvironment in the colon.”

The authors concluded that they had demonstrated mechanistically that PDZK1IP1 enhances the reductive capacity CRC cancer cells via the pentose phosphate pathway. They showed this activation enables efficient growth under oxidative conditions, challenging the previous notion that PDZK1IP1 acts as a tumor suppressor in CRC. Collectively, these observations highlight the significance of epigenomic profiling on primary specimens. The study was published on Oct 17, 2022 in the journal Nature Communications.

Related Links:
Icahn School of Medicine at Mount Sinai 
Agilent Technologies 
Eve Technologies 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: The new method could reduce undiagnosed cancer cases in less-developed regions (Photo courtesy of 123RF)

New Method Offers Sustainable Approach to Universal Metabolic Cancer Diagnosis

Globally, more than one billion people suffer from a high rate of missed disease diagnosis, highlighting the urgent need for more precise and affordable diagnostic tools. Such tools are especially crucial... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.