We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Roche Diagnostics

Develops, manufactures, and markets a wide range of in vitro diagnostic systems, instruments, reagents, and tests read more Featured Products: More products

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Gene Expression Profiling of Mucinous Ovarian Tumors Identifies Prognosis Markers

By LabMedica International staff writers
Posted on 18 Oct 2022
Print article
Image: The BenchMark ULTRA system is Roche Tissue Diagnostics’ most innovative, fully-automated immunohistochemistry and in situ hybridization slide staining system (Photo courtesy of Roche Group)
Image: The BenchMark ULTRA system is Roche Tissue Diagnostics’ most innovative, fully-automated immunohistochemistry and in situ hybridization slide staining system (Photo courtesy of Roche Group)

Advanced stage mucinous ovarian tumors have poor chemotherapy response and prognosis and lack biomarkers to aid Stage I adjuvant treatment. Differentiating primary mucinous ovarian carcinoma (MOC) from gastrointestinal (GI) metastases to the ovary is also challenging due to phenotypic similarities.

MOC is a rare histological type that is less well characterized compared to more common ovarian cancer histotypes. A clinical problem frequently encountered in patients diagnosed with advanced stage MOC is the uncertainty as to whether the primary cancer is ovarian or metastatic from other sites. Metastases typically originate from the gastrointestinal (GI) tract, and the primary tumor may not be evident at surgery or on imaging.

A large international team of Medical Scientists led by the group at The University of New South Wales (Sydney, Australia) analyzed clinicopathological and gene expression data were to identify prognostic and diagnostic features. Discovery analyses selected 19 genes with prognostic/diagnostic potential. Validation was performed through the Ovarian Tumor Tissue Analysis consortium and GI cancer biobanks comprising 604 patients: 333 with MOC, 151 with mucinous borderline ovarian tumors (MBOT), 65 with upper G, and 55 with lower GI tumors.

RNA samples from a total of 634 patients were eligible for the NCounter PlexSet assay (Nanostring, Seattle, WA, USA) extracted from either 403 formalin-fixed, paraffin embedded (FFPE) whole sections, 191 FFPE cores, or 40 fresh-frozen sections. A second sample was analyzed in a subset of 33 patients: either multiple blocks from the same tumor or multiple tumor tissue sites. The team performed ERBB2/HER2 immunochemistry (IHC) using anti-HER2/neu (4B5), and Silver-enhanced in situ hybridization (SISH) using HER2/Ch17 Dual ISH DNA Probe Cocktail, (Roche Diagnostics, Indianapolis, IN, USA). Staining was performed on the Ventana Benchmark ULTRA Platform (Roche Group, Tucson, AZ, USA) on 4 µm tissue microarray sections for a subset of cases from one study.

The investigators reported that infiltrative pattern of invasion was associated with decreased overall survival (OS) within 2-years from diagnosis, compared with expansile pattern in Stage I MOC (hazard ratio HR 2.77). Increased expression of THBS2 and TAGLN were associated with shorter OS in MOC patients, (HR 1.25) and (1.21) respectively. ERBB2 (HER2)-amplification or high mRNA expression was evident in 64/243 (26%) of MOCs, but only 8/243 (3%) were also infiltrative (4/39, 10%) or Stage III/IV (4/31, 13%).

The authors concluded that an infiltrative growth pattern infers poor prognosis within 2-years from diagnosis and may help select Stage I patients for adjuvant therapy. High expression of THBS2 and TAGLN in MOC confer an adverse prognosis and is upregulated in the infiltrative subtype which warrants further investigation. Anti-HER2 therapy should be investigated in a subset of patients. MOC samples clustered with upper GI, yet markers to differentiate these entities remain elusive, suggesting similar underlying biology and shared treatment strategies. The study was published on October 12, 2022 in the journal Clinical Cancer Research.

Related Links:
The University of New South Wales
Roche Diagnostics 
Roche Group

Gold Supplier
Vaginosis Test
D-Dimer Test
Epithod 616 D-Dimer Kit
Hemolysing Reagent
Dialyse-BA 5D
M. Tuberculosis Indirect Test

Print article


Clinical Chem.

view channel
Image: ELISA kit for liver-type fatty acid–binding protein (L-FABP). The level of L-FABP present in urine reflects the level of renal tubular dysfunction (Photo courtesy of Sekisui Medical Co)

Urinary Biomarkers Predict Weaning From Acute Dialysis Therapy

Acute kidney injury is associated with a higher risk of chronic kidney disease (CKD), end-stage renal disease, and long-term adverse cardiovascular effects. Critically ill patients with acute kidney injury... Read more


view channel
Image: Ring-form trophozoites of Plasmodium vivax in a thin blood smear (Photo courtesy of Centers for Disease Control and Prevention)

Immune Regulators Predict Severity of Plasmodium vivax Malaria

Cytokines and chemokines are immune response molecules that display diverse functions, such as inflammation and immune regulation. In Plasmodium vivax infections, the uncontrolled production of these molecules... Read more


view channel
Image: Breast cancer spread uncovered by new molecular microscopy (Photo courtesy of Wellcome Sanger Institute)

New Molecular Microscopy Tool Uncovers Breast Cancer Spread

Breast cancer commonly starts when cells start to grow uncontrollably, often due to mutations in the cells. Overtime the tumor becomes a patchwork of cells, called cancer clones, each with different mutations.... Read more


view channel
Image: With Cell IDx’s acquisition, Leica Biosystems will be moving its multiplexing menu forward (Photo courtesy of Leica Biosystems)

Leica Biosystems Acquires Cell IDx, Expanding Offerings in Multiplexed Tissue Profiling

Leica Biosystems, a technology leader in automated staining and brightfield and fluorescent imaging (Nussloch, Germany), has acquired Cell IDx, Inc. (San Diego, CA, USA), which provides multiplex staining... Read more
Copyright © 2000-2022 Globetech Media. All rights reserved.