We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Technopath Clinical Diagnostics

QIAGEN

Qiagen is a provider of sample and assay technologies for molecular diagnostics and applied testing, including comple... read more Featured Products: More products

Download Mobile App




Events

ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.
23 Sep 2021 - 25 Sep 2021

Leptomeningeal Disease Diagnosed Using CSF Cell-Free DNA

By LabMedica International staff writers
Posted on 26 Aug 2021
Print article
Image: Small round blue tumor cells found in the CSF of a patient with leptomeningeal disease from rhabdomyosarcoma (Photo courtesy of Pediatric Oncology)
Image: Small round blue tumor cells found in the CSF of a patient with leptomeningeal disease from rhabdomyosarcoma (Photo courtesy of Pediatric Oncology)
Leptomeningeal disease (LMD) is a devastating complication of solid and liquid systemic and central nervous system malignant neoplasms. LMD, in which cancer metastasizes to the cerebrospinal fluid, occurs in 4% to 15% of cancer patients and is associated with poor survival, with untreated patients dying within four to six weeks.

Leptomeningeal disease is typically diagnosed via identification of malignant cells in cerebrospinal fluid (CSF), most commonly obtained via lumbar puncture or ventriculoperitoneal (VP) shunt access. CSF cytological analysis. The currently most reliable diagnostic method, has a sensitivity of approximately only 75% and is known to produce persistently negative results in approximately 10% of patients.

A large team of Neuro-oncologists at the Massachusetts General Hospital (Boston, MA, USA) and their colleagues conducted a diagnostic study to assess the use of genomic sequencing of CSF samples obtained from 30 patients with suspected or confirmed LMD from 2015 through 2018 to identify tumor-derived cfDNA. This study consisted of two patient populations: 22 patients with cytologically confirmed LMD without parenchymal tumors abutting their CSF and eight patients with parenchymal brain metastases with no evidence of LMD.

Cell-free DNA was isolated from blood plasma and CSF using a QIASymphony instrument with the QIASymphony DSP Circulating DNA Kit (Qiagen, Hilden, Germany). A subset of libraries was prepared with unique molecular identifier adapters (Integrated DNA Technologies, Coralville, IA, USA). Prepared libraries were sequenced on HiSeq X, HiSeq 2500, or HiSeq 4000 instruments (Illumina, San Diego, CA, USA) to a targeted mean depth of 0.1X. Samples were aligned to hg19 using bwa-mem, version 0.7.7-r441.

The scientists reported that in total, 30 patients (23 women [77%]; median age, 51 years [range, 28-81 years]), primarily presenting with metastatic solid malignant neoplasms, participated in this study. For 48 follow-up samples from patients previously diagnosed via cytological analysis as having LMD with no parenchymal tumor abutting CSF, cfDNA findings were accurate in the assessment of LMD in 45 samples, whereas cytological analysis was accurate in only 36 samples. Of 43 LMD-positive samples, CSF cfDNA analysis was sensitive to LMD in 40 samples and cytological analysis was sensitive to LMD in 31 samples, a significant difference. For three patients with parenchymal brain metastases abutting the CSF and no suspicion of LMD, cytological findings were negative for LMD in all three patients, whereas cfDNA findings were positive in all three patients.

Priscilla K. Brastianos, MD, Assistant Professor of Medicine and a co-senior author of the study, said, “If we are able to confidently diagnose LMD using cell-free DNA earlier and with fewer invasive procedures, then we can institute treatment sooner and enroll patients in clinical trials for new LMD treatments. The ultimate hope is that we can improve patient survival with earlier diagnosis and treatment for this deadly disease.”

The authors concluded that the diagnostic study found improved sensitivity and accuracy of cfDNA CSF testing versus cytological assessment for diagnosing LMD with the exception of parenchymal tumors abutting CSF, suggesting improved ability to diagnosis LMD. The study was published on August 9, 2021 in the journal JAMA Network Open.

Related Links:
Massachusetts General Hospital
Qiagen
Integrated DNA Technologies
Illumina



Gold Supplier
ADAMTS13 Activity Assay
HemosIL ACUSTAR ADAMTS13 Activity Assay
New
Gold Supplier
SARS-COV-2 PLUS UK Real Time PCR kit
SARS-COV-2 PLUS UK REALTIME PCR KIT
New
Silver Supplier
Automated Body Fluid Cell Count Control
Cell-Chex Auto
New
Gold Supplier
SARS-CoV-2/Flu A/B & RSV Test
RespiBio Panel 3 (RBRP3)

Print article

Channels

Pathology

view channel
Image: The CellSearch Circulating Tumor Cell Kit is intended for the enumeration of circulating tumor cells of epithelial origin (CD45-, EpCAM+, and cytokeratins 8, 18+, and/or 19+ and PD-L1) in whole blood (Photo courtesy of CellSearch/Menarini Silicon Biosystems)

PD-L1 Expression in Circulating Tumor Cells Investigated for NSCLC

In non-small cell lung cancer (NSCLC), analysis of programmed cell death ligand 1 (PD-L1) expression in circulating tumor cells (CTCs) is a potential alternative to overcome the problems linked to the... Read more

Industry

view channel
Illustration

Global Digital Polymerase Chain Reaction (dPCR) Market Projected to Reach Close to USD 1.15 Billion by 2028

The global digital polymerase chain reaction (dPCR) market is projected to grow at a CAGR of more than 9% from over USD 0.50 billion in 2020 to nearly USD 1.15 billion by 2028, driven primarily by rising... Read more
Copyright © 2000-2021 Globetech Media. All rights reserved.