We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Childhood Kidney Cancer Arises from Altered Normal Tissue

By LabMedica International staff writers
Posted on 16 Dec 2019
While kidney cancer in children is rare, the most common type is Wilms tumor, which mostly affects children under the age of five. More...
Most cases of Wilms tumor can be cured through surgery to remove the afflicted kidney in combination with chemotherapy and possibly radiotherapy.

In adults, cancers are typically thought to arise through premalignant clonal expansion, but it's been unclear whether the process is similar in pediatric cancers. Scientists have sequenced tumor and normal kidney tissue to find that alterations indicative of disease were present in some normal tissue from patients as well as in tumors, indicating that that these changes affect cells from which Wilms tumors may later arise.

A large team of scientists working with the Wellcome Sanger Institute (Hinxton, UK) sequenced kidney samples from 54 people, including nearly two dozen children with Wilms tumor, the parents of children with Wilms tumor, and others. The team constructed phylogenetic trees of tumor development based on the somatic mutations present. For three children with unilateral Wilms tumor, they sampled their tumors, blood, and histologically normal kidney and uncovered mosaic mutations within these samples. As some of these mosaic mutations were found in both normal and tumor kidney tissue, though not in blood the investigator suspected that these mutations might have undergone clonal expansions within the kidney.

The scientists folded in additional samples from other Wilms tumor cases; they found these clonal expansions within normal kidney tissue in 61% of the 23 cases they examined. But when they examined tissues from people without Wilms, they found that these clonal expansions were not common in normal kidney development. Instead, these expansions within histologically normal tissue were atypical outcomes of renal development that appear to precede development of Wilms tumor. Nearly 60% of these normal kidney tissues with clonal nephrogenesis exhibited hypermethylation of the H19 locus, which typically acts to regulate cell growth and is a known Wilms tumor driver. This hypermethylation was found throughout the clone. This suppression of H19 leads cells to grow more rapidly to create this swathe of pre-malignant cells from which Wilms tumor may then arise.

Sam Behjati, MA, BM, BCh (Oxon), PhD, a consultant pediatric oncologist and senior study author, said, “The discovery of the genetic root of Wilms' tumor signals a shift in our understanding of this particular cancer and childhood cancer more generally. Our findings represent a radical departure from how we think about Wilms' tumors because we never expected to find the root of cancer in normal-looking tissue.”

The authors concluded that phylogenetic analyses of bilateral tumors indicated that clonal expansions can evolve before the divergence of left and right kidney primordia. These findings reveal embryonal precursors from which unilateral and multifocal cancers develop. The study was published on December 6, 2019 in the journal Science.

Related Links:
Wellcome Sanger Institute


Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Verification Panels for Assay Development & QC
Seroconversion Panels
New
STI Test
REALQUALITY RQ-SevenSTI
New
Chlamydia Pneumoniae Test
Chlamydia Pneumoniae (CP) Real Time PCR Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The POC device rapidly predicts neonatal respiratory disease at birth in the NICU (Photo courtesy of SIME Diagnostics)

AI-Powered Lung Maturity Test Identifies Newborns at Higher Risk of Respiratory Distress

Each year, approximately 300,000 babies in the United States are born between 32 and 36 weeks' gestation, according to national health data. This group is at an elevated risk for respiratory distress,... Read more

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: Scanning electron microscopy images showing 3D micro-printed Limacon-shaped whispering-gallery-mode microcavities with different amounts of deformation (Photo courtesy of A. Ping Zhang/PolyU)

Tiny Microlaser Sensors with Supercharged Biosensing Ability to Enable Early Disease Diagnosis

Optical whispering-gallery-mode microlaser sensors function by trapping light within tiny microcavities. When target molecules bind to the cavity, they induce subtle changes in the laser’s frequency, allowing... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.