We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Metastatic Tumor Profiles Lead to Potential Treatment Targets

By LabMedica International staff writers
Posted on 05 Nov 2019
Metastatic cancer is a major cause of death and is associated with poor treatment efficacy. More...
A better understanding of the characteristics of late-stage cancer is required to help adapt personalized treatments, reduce overtreatment and improve outcomes.

In recent years, several large-scale whole-genome sequencing (WGS) analysis efforts have yielded valuable insights into the diversity of the molecular processes that drive different types of adult and pediatric cancer and have fuelled the promises of genome-driven oncology care.

A large team of scientists led by the Hartwig Medical Foundation (Amsterdam, The Netherlands) included in a study patients with advanced cancer not curable by local treatment options and being candidates for any type of systemic treatment and any line of treatment were included as part of two clinical studies. Core needle biopsies were sampled from the metastatic lesion, or when considered not feasible or not safe, from the primary tumor site and frozen in liquid nitrogen. A single 6-μm section was collected for haematoxylin and eosin (H&E) staining and estimation of tumor cellularity by an experienced pathologist and 25 sections of 20-μm were collected in a tube for DNA isolation.

The investigators isolated DNA from biopsies (>30% tumor cellularity) and blood) using the DSP DNA Midi kit for blood and QIAsymphony DSP DNA Mini kit for tissue (Qiagen, Hilden, Germany). A total of 50–200 ng of DNA (sheared to average fragment length of 450nt) was used as input for TruSeq Nano LT library preparation (Illumina, San Diego, CA, USA). Barcoded libraries were sequenced as pools on the Illumina HiSeqX generating 2 × 150 read pairs using standard settings. Several other methods were performed to elucidate the study.

The scientists sequenced the genomes of 2,520 tumor samples and matched normal tissue from 2,399 individuals with metastatic cancer. By sifting through more than 70 million somatic changes in the tumors, including point mutations, small insertions and deletions, copy number shifts, and other features, they distinguished between mutations present at earlier stages of disease and those that cropped up during treatment. The sequences uncovered somatic mutation differences from one cancer type to the next, for example, including large numbers of point mutations in tumors stemming from lung cancer or melanoma. They also highlighted driver gene changes and recurrently mutated genes that seem to be important in the metastatic cancer setting.

In more than half of metastases, for example, the team unearthed whole-genome duplication events, with as many as 80% of esophageal tumors showing these duplications. Meanwhile, some 62% of patients had alterations that were flagged as clinically actionable; either using approved treatments or experimental drugs. The alterations identified in 18% of the patients led to on-label treatment strategies, the team reported, while roughly 13% had mutations that might be amenable to off-label treatment. Another 31% of the cases involved tumor alterations that coincided with eligibility for specific clinical trials.

The authors concluded that their results demonstrated that whole-genome sequencing analysis of metastatic cancer can provide novel and relevant insights, and are instrumental in addressing some of the key challenges in precision medicine in cancer and that the sample set profiled for the current study provides a valuable complementary resource to whole-genome sequence-based data of primary tumors. The study was published on October 23, 2019, in the journal Nature.

Related Links:
Hartwig Medical Foundation
Qiagen
Illumina



New
Gold Member
Hematology Analyzer
Medonic M32B
Portable Electronic Pipette
Mini 96
New
Alcohol Testing Device
Dräger Alcotest 7000
New
Automatic Chemiluminescence Immunoassay Analyzer
Shine i2000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.