We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




CTC Purification Enables Identification of Cancer-Linked Genetic Arrangements

By LabMedica International staff writers
Posted on 29 Aug 2019
The use of circulating tumor cells (CTCs) as a surrogate tumor source for molecular profiling of disease offers a potential noninvasive diagnostic solution for understanding underlying tumor biology, guiding treatment interventions, and monitoring disease progression.

CTCs are cells that have shed into the vasculature or lymphatics from a primary tumor and are carried around the body in the blood circulation. More...
Unlike circulating tumor DNA or RNA, which are highly fragmented and compounded by substantial background, CTCs house intact genomic DNA and RNA, providing more genetic information about the tumors from which they originate.

An international team of scientists collaborating with the University of California, Los Angeles (Los Angeles, CA, USA) developed a method combining antibody-based circulating tumor cell (CTC) capture and disulfide cleavage-driven CTC release to efficiently and rapidly purify the cells for downstream molecular analysis. The team demonstrated a covalent chemistry–based nanostructured silicon substrate (“Click Chip”) for CTC purification that leverages bioorthogonal ligation–mediated CTC capture and disulfide cleavage–driven CTC release.

The team designed the custom microfluidic chip that integrates tetrazine antibody (Tz)-grafted silicon nanowire substrates with a network of microchannels modified to induce chaotic mixing. In order to perform biorthogonal ligation-mediated CTC capture, they grafted trans-cyclooctene (TCO) modified capture antibodies to the CTCs in a blood sample. When a blood sample runs through the chip, the Tz and TCO react and instantly snag the CTCs. This they likened TCO and Tz to the male and female parts of a seatbelt, respectively, that "click" together.

The group then tested the ability to detect and quantify ALK and ROS1 oncogenic gene rearrangements in CTCs isolated from patients with non-small-cell lung carcinoma (NSCLC) using Click Chip. They collected blood samples from 12 NSCLC patients before and after crizotinib cancer drug therapy, as well as samples from six healthy controls. Seven of the NSCLC patients had ALK rearrangements and five had ROS1 rearrangements.

The team used two tubes of 2-ml blood samples from each patient to perform CTC capture, immunostaining, CTC enumeration, and CTC purification in the Click Chip, followed by reverse transcriptase (RT) Droplet Digital PCR analysis to detect and quantify the copy number of rearranged ALK or ROS1 transcripts. They found that each NSCLC patient had anywhere from 0 to 36 CTCs in their blood samples. They also detected positive ALK or ROS1 rearrangements in all 12 patients, which was consistent with tissue biopsies collected at initial diagnosis.

Hsian-Rong Tseng, PhD, a professor and co-author of the study, said, “With the improved rare-cell purification performance observed for Click Chips, it is conceivable that the devices can be adopted for purification of rare circulating fetal nucleated cells, such as circulating trophoblasts for downstream single-cell whole genome profiling, paving the way for implementation of Non-Invasive Prenatal Testing.” The study was published on July 31, 2019, in the journal Science Advances.

Related Links:
University of California, Los Angeles


Gold Member
Troponin T QC
Troponin T Quality Control
Serological Pipet Controller
PIPETBOY GENIUS
New
Francisella Tularensis Test
TULAREMIA VIRCLIA IgG+IgM MONOTEST
New
Mini Vortex Mixer
Vornado
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: The tip optofluidic immunoassay platform enables rapid, multiplexed antibody profiling using only 1 μL of fingertip blood (Photo courtesy of hLife, DOI:10.1016/j.hlife.2025.04.005)

POC Diagnostic Platform Performs Immune Analysis Using One Drop of Fingertip Blood

As new COVID-19 variants continue to emerge and individuals accumulate complex histories of vaccination and infection, there is an urgent need for diagnostic tools that can quickly and accurately assess... Read more

Technology

view channel
Image: The machine learning-based method delivers near-perfect survival estimates for PAC patients (Photo courtesy of Shutterstock)

AI Method Predicts Overall Survival Rate of Prostate Cancer Patients

Prostate adenocarcinoma (PAC) accounts for 99% of prostate cancer diagnoses and is the second most common cancer in men globally after skin cancer. With more than 3.3 million men in the United States diagnosed... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.