We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Microfluidic Device Isolates Circulating Tumor Cell Clusters

By LabMedica International staff writers
Posted on 03 Jul 2019
Print article
Image: (A and B) Photomicrographs of the layers of the device; (C) the mold ready for casting and (D) the chip mounted on a slide (Photo courtesy of San Diego State University).
Image: (A and B) Photomicrographs of the layers of the device; (C) the mold ready for casting and (D) the chip mounted on a slide (Photo courtesy of San Diego State University).
The three main challenges of cancer treatment are metastases, recurrence, and acquired therapy resistance. These challenges have been closely linked to circulating cancer cell clusters.

About 90% of cancer deaths are due to metastases, when tumors spread to other vital organs, and it has recently been realized that it's not individual cells but rather distinct clusters of cancer cells that circulate and metastasize to other organs.

A team of scientists led by San Diego State University (San Diego, CA, USA) has shown how a well-known passive micromixer design (staggered herringbone mixer - SHM) can be optimized to induce maximum chaotic advection within antibody-coated channels of dimensions appropriate for the capture of cancer cell clusters. The device’s principle design configuration is called: Single-Walled Staggered Herringbone (SWaSH).

The design of the device makes use of 32 channels, each of 200 μm width and 100 μm spacing, which will increase the available chip surface to cross-sectional area by approximately 1.4-fold. Numerous simulations were performed by varying different properties of the HB pattern, such as channel configuration, and flow velocities to optimize for our deterministic factor cell-to-surface interactions. The Cy5-labeled streptavidin was utilized to visualize the cross-linked and functionalized alginate hydrogel coating within the micro channels. Images were captured using a fluorescence Zeiss 200M microscope.

Peter Teriete, PhD, an assistant professor and co-author of the study, said, “Our device's channel design had to generate microfluidic flow characteristics suitable to facilitate cell capture via antibodies within the coated channels. So we introduced microfeatures, herringbone recesses, to produce the desired functionality. We also developed a unique alginate hydrogel coating that can be readily arrayed with antibodies or other biomolecules. By connecting bioengineering with materials science and basic cancer biology, we were able to develop a device and prove that it performs as desired.” The study was published on June 18, 2019, in the journal AIP Advances.

Related Links:
San Diego State University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
POCT Fluorescent Immunoassay Analyzer
FIA Go
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.