Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Microfluidic Device Captures Tumor-Specific Extracellular Vesicles

By LabMedica International staff writers
Posted on 21 Mar 2018
A microfluidic device has been developed that can capture glioblastoma-derived extracellular vesicles, with high specificity, using very small blood samples, which would be useful for pediatric patients.

The microfluidic channels in the device contain a cocktail of antibodies that are specific for molecules found on glioblastoma-derived extracellular vesicles, meaning the vesicles are captured as they pass through the channels.

Scientists at Massachusetts General Hospital (Charlestown, MA, USA) and their colleagues collected blood samples from a total of 13 brain cancer patients and six healthy donors were included in this study. More...
Microfluidic devices consisted of 8-Channel herringbone structures were fabricated using standard photolithography and different strategies were tested for optimal configuration of capture antibodies on the surface of the microfluid device.

Isolated extracellular vesicles (EVs) were quantified using a tunable resistive pulse sensing (TRPS) qNano instrument. EV’s were isolated with immobilized with streptavidin-coated magnetic particles. The cyclic olefin copolymer (COC) The COC microfluidic device allowed direct imaging of captured EVs. Micrographs were captured with an LSM510 confocal microscope equipped with a ×63 Zeiss Plan-APOCHROMAT oil objective. RNA was isolated and quantified. Digital polymerase chain reaction, library preparation for RNA sequencing and RNA sequencing analysis was also performed.

The team reported that the sensitive analytical microfluidic platform (EVHB-Chip) that enables tumor-specific EV-RNA isolation within three hours. Using the EVHB-Chip, They achieved 94% tumor-EV specificity, a limit of detection of 100 EVs per μL, and a 10-fold increase in tumor RNA enrichment in comparison to other methods. This approach allowed for the subsequent release of captured tumor EVs, enabling downstream characterization and functional studies. Processing serum and plasma samples from glioblastoma multiforme (GBM) patients, they detected the mutant Type III epidermal growth factor receptor (EGFRvIII) messenger RNA (mRNA).

Shannon L. Stott, PhD, an Assistant Professor of Medicine and the lead investigator of the study, said, “Our device’s ability to sort tumor-specific extracellular vesicles out from the billions of extracellular vesicles carried through the blood stream may lead to the development of much-needed diagnostic and monitoring tools for this and other hard-to-treat cancers.” The study was published online on January 12, 2018, in the journal Nature Communications.

Related Links:
Massachusetts General Hospital


Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Portable Electronic Pipette
Mini 96
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Gold Member
Hybrid Pipette
SWITCH
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The tool enables scientists to track real-time fluctuations in T cell function with unprecedented speed and precision (Photo courtesy of Shutterstock)

Luminescent Probe Measures Immune Cell Activity in Real Time

The human immune system plays a vital role in defending against disease, but its activity must be precisely monitored to ensure effective treatment in cancer therapy, autoimmune disorders, and organ transplants.... Read more

Industry

view channel
Image: The collaboration supports clinical validation and regulatory submissions of the new T1D 4-plex assay on Revvity’s GSP instrument (Photo courtesy of Revvity)

Revvity and Sanofi Collaborate on Program to Revolutionize Early Detection of Type 1 Diabetes

Type 1 diabetes (T1D) is a lifelong autoimmune condition in which the immune system destroys the pancreas’s insulin-producing beta cells, leading to dependence on insulin therapy. Early detection is critical... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.