We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Olympus

Manufactures optical and digital equipment for the healthcare and consumer electronics sectors, including endoscopy a... read more Featured Products: More products

Download Mobile App




Simple Method Developed to Characterize Immune Cells in Tumors

By LabMedica International staff writers
Posted on 27 Jul 2016
Despite recent achievements in the development of cancer immunotherapies, only a small group of patients typically respond to them and therefore predictive markers of disease course and response to immunotherapy are urgently needed.

A new method has been developed for analyzing multiple tissue markers using only one slide of a tumor section to better understand immune response occurring locally. More...
The multiplexed immunohistochemical consecutive staining on a single slide (MICSSS) helps characterize human cells involved in immune responses at the tissue site, before and after treatment with immunotherapy.

Scientists at the Icahn School of Medicine at Mount Sinai (New York, NY, USA) and their international colleagues obtained paraffin-embedded human tonsils, ulcerative colitis, non-small cell lung cancer (NSCLC), melanoma, and colorectal tumor samples from their Biorepository tissue bank. The formalin-fixed paraffin embedded (FFPE) were processed for immunohistochemistry (IHC) and images were acquired using an Olympus whole-slide scanner with OlyVIA software (Olympus Life Science, Center Valley, PA, USA) or an Eclipse Ci-E microscope (Nikon Instruments, Melville, NY, USA).

The authors have described a multiplexed chromogenic IHC strategy for high-dimensional tissue analysis that circumvents many of the limitations of regular chromogenic, immunofluorescence, and mass cytometry approaches that could be readily implemented in clinical pathology laboratories. The MICSSS method provides a new powerful tool to map the microenvironment of tissue lesional sites with excellent resolution, in a sample-sparing manner, to monitor immune changes in situ during therapy and help identify prognostic and predictive markers of clinical outcome in patients with cancer and inflammatory diseases.

Sacha Gnjatic, PhD, an Associate Professor and senior co-author said, “Our goal was to get a better understanding of immunologic responses at the tumor site while addressing the need for high-dimensional analysis using as little tissue as possible. We need more comprehensive analyses of the immune microenvironment of tumors, as part of our immune monitoring to inform treatment and predict outcomes for cancer patients.” The study was published on July 14, 2016, in the journal Science Immunology.

Related Links:
Icahn School of Medicine at Mount Sinai
Olympus Life Science
Nikon Instruments

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Verification Panels for Assay Development & QC
Seroconversion Panels
New
TRAb Immunoassay
Chorus TRAb
New
Typhoid Rapid Test
OnSite Typhoid IgG/IgM Combo Rapid Test
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.