Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Microfluidic Silicon Probe Accurately Stains Tissue Sections

By LabMedica International staff writers
Posted on 24 Jan 2012
A flexible, noncontact microfluidic probe made from silicon can help pathologists to investigate critical tissue samples for disease diagnostics.

The microfluidic probe can accurately stain tissue sections at the micrometer scale. More...
It consists of a silicon microfluidic head having two microchannels. Unlike an inkjet printer cartridge, the head reaspirates the liquid that it injects on a surface. This prevents spreading and accumulation of the liquid on the surface, which can lead to overexposure.

Specifically for tissue section analysis, the probe can deliver an antibody very locally in a selected area of a tissue section with pinpoint accuracy. Since analysis can be done on spots and lines instead of on the entire tissue section, the tissue is better preserved for additional tests, if required. In addition, only a few picoliters of liquid containing antibodies are needed for each analysis spot.

IBM (Zurich, Switzerland) scientists developed the microfluidic probe, which fits to standard workflows in conventional pathology. In addition, it is compatible with current biochemical staining systems and resistant to a broad range of chemicals. The small size of the probe also enables easy viewing of the sample from above and below by the inverted microscope commonly used in clinical laboratories.

"We have developed a proof-of-concept technology, which I hope puts pathology on a modern roadmap—benefiting from the latest developments in silicon-based microfluidics," said Govind Kaigala, a scientist at IBM Research-Zurich. He added, "This new approach will enable pathologists to stain tissue samples with micrometer precision and easily perform multiple tissue stains on limited samples."

IBM scientists will continue to test and improve the microfluidic probe and potentially begin using it in laboratory environments in the next several months. In addition, the team plans to explore specific clinical applications, possibly with partners in the field of pathology. The microfluidic probe promises to support the work of pathologists and become a tool of choice for pharmaceutical research and diagnostics involving biological specimens.

Related Links:

IBM Research, Zurich



Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Portable Electronic Pipette
Mini 96
New
Rapid Molecular Testing Device
FlashDetect Flash10
New
Hemodynamic System Monitor
OptoMonitor
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The nanotechnology-based liquid biopsy test could identify cancer at its early stages (Photo courtesy of 123RF)

2-Hour Cancer Blood Test to Transform Tumor Detection

Glioblastoma and other aggressive cancers remain difficult to control largely because tumors can recur after treatment. Current diagnostic methods, such as invasive biopsies or expensive liquid biopsies,... Read more

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.