We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

Mosaic Confocal Microscopy Technique Speeds Up Skin Cancer Surgery

By LabMedica International staff writers
Posted on 12 Feb 2014
Print article
Image: Comparison of residual cancer detected with the new confocal imaging technique and the currently used freezing and staining technique (Photo courtesy of Dr. Milind Rajadyhyaksha, Memorial Sloan-Kettering Cancer Center).
Image: Comparison of residual cancer detected with the new confocal imaging technique and the currently used freezing and staining technique (Photo courtesy of Dr. Milind Rajadyhyaksha, Memorial Sloan-Kettering Cancer Center).
A new and faster optical approach called strip mosaicing confocal microscopy was recently developed to reduce the time required to perform Mohs surgery for the removal of malignant skin cancers.

Mohs surgery, also called Mohs micrographic surgery, is a precise surgical technique that is used to remove all parts of cancerous skin tumors while preserving as much healthy tissue as possible. Mohs surgery is used to treat such skin cancers as basal cell and squamous cell carcinomas.

Investigators at Memorial Sloan Kettering Cancer Center (New York, NY, USA) were funded by a grant from the [US] National Institute of Biomedical Imaging and Bioengineering (Bethesda, MD, USA) to develop a microscopy method to rapidly analyze tissues during the Mohs procedure.

The investigators developed a new pathological assessment technique called strip mosaicing confocal microscopy that employed a focused laser line to perform multiple scans of tissue excised during Mohs surgery to obtain image “strips” that were then combined, like a mosaic, into a complete image of the tissue. The process required only 90 seconds and eliminated the need to freeze and stain the tissue samples for analysis— a process that takes 20 to 45 minutes.

In a study, tissue samples from 17 Mohs cases were imaged in the form of strip mosaics. Each mosaic was divided into two halves (submosaics) and graded by a Mohs surgeon and a dermatologist who were blinded to the pathology. The 34 submosaics were compared with the corresponding Mohs pathology. Results revealed that the overall image quality was excellent for resolution, contrast, and stitching. Components of normal skin including the epidermis, dermis, dermal appendages, and subcutaneous tissue were easily visualized. The preliminary measures of sensitivity and specificity were both 94% for detecting skin cancer margins.

Dr. Steve Krosnick, director of the program for image-guided interventions at the [US] National Institute of Biomedical Imaging and Bioengineering, said, “The technology is particularly well-suited for Mohs-trained surgeons, who are experts at performing excisions and interpreting images of tissue samples removed during the Mohs procedure. Image quality, ability to make accurate interpretations, and time savings will be key parameters for adoption of the system in the clinical setting, and the current results are very encouraging.”

The study was published in the October 2013 issue of the British Journal of Dermatology.

Related Links:

Memorial Sloan Kettering Cancer Center
National Institute of Biomedical Imaging and Bioengineering

Flocked Swab
HydraFlock and PurFlock Ultra
Platinum Supplier
Diagnostic Reader
Acucy System
SARS-CoV-2 Test
BioCode SARS-CoV-2 Assay
Rapid Test Analyzer
RapiRead CUBE Reader

Print article


Clinical Chem.

view channel
Image: Electrochemical cells etched by laser on wooden tongue depressor measure glucose and nitrite in saliva (Photo courtesy of Analytical Chemistry)

Biosensor-Fabricated Wooden Tongue Depressor Measures Glucose and Nitrite in Saliva

Physicians often use tongue depressors to examine a patient's mouth and throat. However, it is hard to imagine that this simple wooden tool could actively assess a patient's health. This idea has led to... Read more


view channel
Image: The Atellica HEMA 570 and 580 hematology analyzers remove workflow barriers (Photo courtesy of Siemens)

Next-Gen Hematology Analyzers Eliminate Workflow Roadblocks and Achieve Fast Throughput

Hematology testing is a critical aspect of patient care, utilized to establish a patient's health baseline, track treatment progress, or guide timely modifications to care. However, increasing constraints... Read more


view channel
Image: Newly observed anti-FSP antibodies have also been found to predict immune-related adverse events (Photo courtesy of Calviri)

First Blood-Based Biomarkers Test to Predict Treatment Response in Cancer Patients

Every year worldwide, lung cancer afflicts over two million individuals and almost the same number of people succumb to the disease. This malignancy leads the charts in cancer-related mortalities, with... Read more


view channel
Image: The rapid MTB strip test for tuberculosis can identify TB patients within two hours (Photo courtesy of Chulalongkorn University)

Rapid MTB Strip Test Detects Tuberculosis in Less Than an Hour without Special Tools

Tuberculosis (TB), a highly infectious disease, continues to pose significant challenges to public health worldwide. TB is caused by a bacterium known as "Mycobacterium tuberculosis," spreading through... Read more


view channel
Electronic biosensor uses DNA aptamers for detecting biomarkers in whole blood samples (Photo courtesy of Freepik)

Electronic Biosensor Detects Biomarkers in Whole Blood Samples without Addition of Reagents

The absence of robust, reliable, and user-friendly bioanalytical tools for early and timely diagnosis of cardiovascular diseases, particularly sudden cardiac arrest, leads to preventable deaths and imposes... Read more


view channel
Image: The Coris acquisition provides Avacta with a broad, professional-use rapid test product portfolio (Photo courtesy of Coris Bioconcept)

Avacta Expands Diagnostics Portfolio with Acquisition of Rapid Test Maker Coris Bioconcept

Avacta Group plc (London, UK), a life sciences company developing oncology drugs and diagnostics, has acquired Coris Bioconcept SRL (Gembloux, Belgium) for an upfront cash consideration of GBP 7.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.