We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




New Technology Detects Cancer Mutant Genes in Blood with World's Highest Sensitivity

By LabMedica International staff writers
Posted on 11 Sep 2024

Current genetic analysis technologies have struggled with low analytical sensitivity when detecting mutated genes, especially in early-stage cancer patients, making accurate diagnoses challenging. More...

Furthermore, establishing quick treatment strategies and using these technologies for screening tests has been limited by the high cost, lengthy analysis times, and the need for specialized equipment. To address these issues, researchers have developed a new technology capable of detecting cancer mutations in the blood with an unprecedented mutation detection sensitivity of 0.000000001%. This innovation, based on plasmonic nanomaterials for optical signal amplification, was tested on blood samples from lung cancer patients (stages 1-4) and healthy individuals for EGFR mutations, achieving a diagnostic accuracy of 96%.

Developed by the Korea Institute of Materials Science (KIMS, Changwon, South Korea), this low-cost technology can analyze various cancer mutations in the target gene region within one hour, boasting a sensitivity of 0.000000001% (100 zM mutation/10 nM wild-type), which is 100,000 times greater than the previously reported level of 0.0001%. This advancement allows for the early detection of cancer using blood samples from lung cancer patients. The technology relies on nanomaterials that enhance the fluorescence signal and a unique primer/probe design that suppresses the fluorescence of normal genes while amplifying the signal of mutated cancer genes. This accurate detection of fluorescence signals is critical for precisely detecting even tiny amounts of cancerous mutations.

The research team developed a biochip in the form of a microarray, capable of detecting three different EGFR mutant genes (deletions, insertions, and point mutations) on a plasmonic substrate made of high-density, three-dimensional gold nanostructures. In clinical trials involving 43 lung cancer patients (stages 1-4) and 40 healthy individuals, the technology demonstrated a clinical sensitivity of 93% for cancer patients and a clinical specificity of 100% for the healthy group. This breakthrough can play a crucial role in the early diagnosis of cancer, monitoring disease recurrence, and assessing treatment effectiveness, helping to establish personalized treatment plans. Moreover, the ability to perform liquid biopsies using blood rather than invasive surgical biopsies reduces the burden on patients and simplifies the examination process. This technology also shows promise as a regular screening tool, ultimately improving cancer management and patient outcomes.

“Because it is capable of comprehensively detecting various cancer mutations with the world’s highest level of ultra-high sensitivity, it can become a leading player in the early cancer diagnosis and treatment/recurrence monitoring market,” said KIMS senior researcher Dr. Min-young Lee. “We expect that this will greatly improve the survival rate and quality of life of cancer patients.”

Related Links:
KIMS


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
3-Part Differential Hematology Analyzer
Swelab Alfa Plus Sampler
New
Automated PCR System
OnePCR
New
Varicella Zoster Virus Assay
LIAISON VZV Assay Panel (IgG HT, IgM)
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.