We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Rapid Blood Test Diagnoses Brain Cancer in Less Than an Hour

By LabMedica International staff writers
Posted on 28 Aug 2024
Print article
Image: The biochip is used to detect biomarkers for glioblastoma, a fast-growing brain cancer (Photo courtesy of Matt Cashore/University of Notre Dame)
Image: The biochip is used to detect biomarkers for glioblastoma, a fast-growing brain cancer (Photo courtesy of Matt Cashore/University of Notre Dame)

Glioblastoma, an aggressive and currently incurable brain cancer, typically leaves the average patient with a life expectancy of 12-18 months post-diagnosis. Now, a groundbreaking device is capable of diagnosing glioblastoma in less than an hour. This device's central component is a biochip that employs electrokinetic technology to identify biomarkers, specifically active Epidermal Growth Factor Receptors (EGFRs), which are commonly overexpressed in several cancers, including glioblastoma, and found in extracellular vesicles.

Extracellular vesicles, or exosomes, are unique and considerably large nanoparticles secreted by cells. To develop the device, the research team at the University of Notre Dame (Notre Dame, IN, USA) faced a dual challenge: distinguishing active from non-active EGFRs and building a diagnostic tool that could sensitively and selectively detect active EGFRs on extracellular vesicles from blood samples. Their solution was a biochip integrating an economical electrokinetic sensor the size of a ballpoint pen ball. This setup allows antibodies on the sensor to bind multiple times to a single vesicle, greatly enhancing both the sensitivity and specificity of the diagnosis. Additionally, synthetic silica nanoparticles are used to signal the presence of active EGFRs on captured vesicles, contributing a strong negative charge that causes a voltage shift detectable when active EGFRs are present, signaling glioblastoma.

This innovative charge-sensing approach reduces the common interferences seen in other sensor technologies that rely on electrochemical reactions or fluorescence. The diagnostic system comprises three main components: an automation interface, a portable machine prototype that supplies the necessary materials for the test, and the biochip itself. Each analysis, which consumes only 100 microliters of blood and is completed in under an hour, requires a new biochip, costing less than USD 2 to produce, while the automation interface and prototype are reusable. While initially developed for glioblastoma, this technology is versatile enough for potential adaptation to other diseases by detecting various biological nanoparticles. The research team is currently investigating its application in diagnosing pancreatic cancer and other conditions such as cardiovascular disease, dementia, and epilepsy.

“Our electrokinetic sensor allows us to do things other diagnostics cannot,” said Satyajyoti Senapati, a research associate professor of chemical and biomolecular engineering at Notre Dame and co-author of the study. “We can directly load blood without any pretreatment to isolate the extracellular vesicles because our sensor is not affected by other particles or molecules. It shows low noise and makes ours more sensitive for disease detection than other technologies.”

Related Links:
University of Notre Dame

Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Silver Member
New ESR1 Control Kit Featuring Comprehensive 16 Mutation Coverage
ESR1 Control Kit
New
Silver Member
Cytomegalovirus Test
ReQuest CMV IgM ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: The Accelerate WAVE system delivers rapid AST directly from positive blood culture bottles (Photo courtesy of Accelerate Diagnostics)

Rapid Diagnostic System to Deliver Same-Shift Antibiotic Susceptibility Test Results

The World Health Organization estimates that sepsis impacts around 49 million people worldwide each year, resulting in roughly 11 million deaths, with about 1.32 million of these deaths directly linked... Read more

Pathology

view channel
Image: Steps and methodology of skin biopsy processing for dSTORM (Photo courtesy of Front. Mol. Neurosci. (2024); DOI: 10.3389/fnmol.2024.1431549)

Super-Resolution Imaging Detects Parkinson's 20 Years Before First Motor Symptoms Appear

Parkinson's disease is the second most common neurodegenerative disorder globally, affecting approximately 8.5 million people today. This debilitating condition is characterized by the destruction of ... Read more

Industry

view channel
Image: The Scopio X100 and X100HT full-field digital cell morphology solution (Photo courtesy of Beckman Coulter)

Beckman Coulter and Scopio Labs Add World's First Digital Bone Marrow Imaging and Analysis to Long-Term Partnership

Since 2022, Beckman Coulter (Brea, CA, USA) and Scopio Labs (Tel Aviv, Israel) have been working together to accelerate adoption of the next generation of digital cell morphology. Scopio's X100 and X100HT... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.