We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Rapid Blood Test Diagnoses Brain Cancer in Less Than an Hour

By LabMedica International staff writers
Posted on 28 Aug 2024

Glioblastoma, an aggressive and currently incurable brain cancer, typically leaves the average patient with a life expectancy of 12-18 months post-diagnosis. More...

Now, a groundbreaking device is capable of diagnosing glioblastoma in less than an hour. This device's central component is a biochip that employs electrokinetic technology to identify biomarkers, specifically active Epidermal Growth Factor Receptors (EGFRs), which are commonly overexpressed in several cancers, including glioblastoma, and found in extracellular vesicles.

Extracellular vesicles, or exosomes, are unique and considerably large nanoparticles secreted by cells. To develop the device, the research team at the University of Notre Dame (Notre Dame, IN, USA) faced a dual challenge: distinguishing active from non-active EGFRs and building a diagnostic tool that could sensitively and selectively detect active EGFRs on extracellular vesicles from blood samples. Their solution was a biochip integrating an economical electrokinetic sensor the size of a ballpoint pen ball. This setup allows antibodies on the sensor to bind multiple times to a single vesicle, greatly enhancing both the sensitivity and specificity of the diagnosis. Additionally, synthetic silica nanoparticles are used to signal the presence of active EGFRs on captured vesicles, contributing a strong negative charge that causes a voltage shift detectable when active EGFRs are present, signaling glioblastoma.

This innovative charge-sensing approach reduces the common interferences seen in other sensor technologies that rely on electrochemical reactions or fluorescence. The diagnostic system comprises three main components: an automation interface, a portable machine prototype that supplies the necessary materials for the test, and the biochip itself. Each analysis, which consumes only 100 microliters of blood and is completed in under an hour, requires a new biochip, costing less than USD 2 to produce, while the automation interface and prototype are reusable. While initially developed for glioblastoma, this technology is versatile enough for potential adaptation to other diseases by detecting various biological nanoparticles. The research team is currently investigating its application in diagnosing pancreatic cancer and other conditions such as cardiovascular disease, dementia, and epilepsy.

“Our electrokinetic sensor allows us to do things other diagnostics cannot,” said Satyajyoti Senapati, a research associate professor of chemical and biomolecular engineering at Notre Dame and co-author of the study. “We can directly load blood without any pretreatment to isolate the extracellular vesicles because our sensor is not affected by other particles or molecules. It shows low noise and makes ours more sensitive for disease detection than other technologies.”

Related Links:
University of Notre Dame


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Human Estradiol Assay
Human Estradiol CLIA Kit
CBM Analyzer
Complete Blood Morphology (CBM) Analyzer
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.