We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Technique Detects Biomarkers for Kidney Diseases with Nephritic Syndrome

By LabMedica International staff writers
Posted on 27 May 2024
Print article
Image: Researchers have detected novel biomarkers for kidney diseases using a new technique (Photo courtesy of 123RF)
Image: Researchers have detected novel biomarkers for kidney diseases using a new technique (Photo courtesy of 123RF)

Nephrotic syndrome is associated with several kidney diseases such as minimal change disease (MCD), primary focal segmental glomerulosclerosis (FSGS), and membranous nephropathy (MN), and is characterized by high levels of protein in the urine. This condition primarily stems from damage to podocytes, the cells that filter blood in the kidneys, which results in protein leakage into the urine. Often, children diagnosed with MCD or FSGS are categorized under idiopathic nephrotic syndrome (INS), indicating an unknown cause. This is typically because children with elevated urinary protein levels seldom undergo kidney biopsies, which are the standard method for determining the underlying cause. Traditionally, the diagnosis of these conditions has been complicated due to their similar histological features and a general reluctance to perform invasive kidney biopsies, especially in children. Although anti-nephrin autoantibodies have been detected in some patients with MCD and FSGS, their exact role in the progression of these diseases remains unclear. A groundbreaking study recently presented at the 61st ERA Congress has made a significant breakthrough in diagnosing and monitoring kidney diseases linked to nephrotic syndrome.

Researchers at the University Medical Center Hamburg-Eppendorf (Hamburg, Germany) utilized a hybrid method to identify anti-nephrin autoantibodies as a reliable biomarker for tracking the progression of these diseases, paving the way for tailored treatment strategies. The study, which spanned across Europe and the USA, employed a novel combination of immunoprecipitation and enzyme-linked immunosorbent assay (ELISA) to accurately detect anti-nephrin autoantibodies. The results showed that these autoantibodies were present in 69% of adults with MCD and 90% of children with INS who had not received immunosuppressive treatments. The levels of these antibodies also correlated with the activity of the disease, indicating their potential as a biomarker for monitoring disease progression. These antibodies were seldom found in other diseases being studied.

In further experiments, researchers introduced laboratory-synthesized nephrin protein to mice, simulating conditions similar to MCD. This immunization led to phosphorylation of nephrin and significant changes in cellular structures, suggesting that antibodies targeting nephrin play a role in podocyte dysfunction and the onset of nephrotic syndrome. Remarkably, this model required only a single immunization to trigger rapid disease onset, even with low concentrations of antibodies, unlike other models that need multiple immunizations.

“The identification of anti-nephrin autoantibodies as a reliable biomarker, coupled with our hybrid immunoprecipitation technique, enhances our diagnostic capabilities and opens new avenues for closely monitoring disease progression in kidney disorders with nephrotic syndrome,” said Dr. Nicola M. Tomas, co-lead author of the study.

“By providing insights into underlying mechanisms, these findings lay the groundwork for personalized interventions and pave the way for a new era of precision medicine for these complex conditions," added Professor Tobias B. Huber, lead author of the study.

Related Links:
University Medical Center Hamburg-Eppendorf

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.