We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Simple Blood Test Measures Repetitive DNA for Early Cancer Detection

By LabMedica International staff writers
Posted on 05 Mar 2024
Print article
Image: The machine learning model detects a small, previously overlooked family of repetitive DNA (Photo courtesy of 123RF)
Image: The machine learning model detects a small, previously overlooked family of repetitive DNA (Photo courtesy of 123RF)

Cancer patients can have varying levels of a specific kind of repetitive DNA known as Alu elements in comparison to those without cancer. Despite constituting about 11% of the DNA in humans and other primates, Alu elements have traditionally been considered too complex to be effectively utilized as biomarkers due to their small, repetitive nature. Now, advancements in machine learning can allow for the measurement of these elements through a simple blood draw.

Researchers at Johns Hopkins Medicine (Baltimore, MD, USA) leveraged this insight to improve a test designed for early cancer detection. They began their study with a sample size that was ten times larger than what is usually seen in such research. Alu elements are relatively small, each being about 300 base pairs in length within the vast 2 billion-step DNA ladder. Yet, changes in the proportion of Alu elements in blood plasma are consistent, irrespective of the cancer’s origin. The research team had previously developed a test for detecting aneuploidy, a condition involving chromosome copy number alterations common in cancers, using a liquid biopsy blood test. This test identifies fragments of cancer cell DNA circulating in the bloodstream. While conducting this research, they noticed an unusual signal that differentiated between cancer and non-cancer, which wasn’t attributed to changes in chromosome numbers. Consequently, they combined their original test, which analyzed 350,000 repetitive DNA locations, with an unbiased machine learning approach.

In their study, the team analyzed samples from 3,105 individuals with solid tumors and 2,073 without cancer, covering 11 types of cancer and evaluating 7,615 blood samples. The repetitive DNA sequences were examined repeatedly to assess the accuracy of the model. They achieved a specificity rate of 98.9%, crucial for minimizing false positives, especially when screening asymptomatic individuals to avoid erroneous cancer diagnoses. In an independent validation set, incorporating Alu elements into the machine learning model identified 41% of cancer cases that were missed by eight existing biomarkers and the team’s earlier test. The most significant contributor to cancer detection was identified as AluS, the largest subfamily of Alu elements. People with cancer were found to have lower levels of AluS in their blood plasma than typical. The researchers expect their Alu-based cancer detection method to complement the array of existing cancer diagnostic tools. Their next step involves identifying the most promising biomarkers and combining them for enhanced efficacy.

Related Links:
Johns Hopkins Medicine

Gold Member
Veterinary Hematology Analyzer
Exigo H400
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Silver Member
Fixed Speed Tube Rocker
GTR-FS
New
Alpha-Fetoprotein Reagent
AFP Reagent Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.