We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Gold-Enhanced Nanopore Sensors Detect Ovarian Cancer Biomarkers in Urine Samples

By LabMedica International staff writers
Posted on 21 Feb 2024
Print article
Image: The research showed the effectiveness of a new technique to detect ovarian cancer marker peptides (Photo courtesy of VCU)
Image: The research showed the effectiveness of a new technique to detect ovarian cancer marker peptides (Photo courtesy of VCU)

The key to defeating cancer lies in its early and accurate diagnosis. Clinical data underscores this, revealing a significant 50-75% increase in the five-year survival rate when cancers are identified in their initial stages. This is true for various types of cancer, including ovarian cancer, which is notoriously challenging to diagnose. Mass spectrometry has been instrumental in discovering thousands of peptides in the urine of ovarian cancer patients, indicating their potential as biomarkers for the disease. However, the application of mass spectrometry in clinical settings is limited, prompting the need for alternative methods to detect these peptides. Now, a new study has found a novel technique to be effective in identifying specific biomarkers found in the urine of ovarian cancer patients, a development that could eventually aid doctors in diagnosing the disease more accurately.

Researchers from Virginia Commonwealth University (VCU, Richmond, VA, USA) employed a combination of gold nanoparticles and nanopore sensing to detect and categorize 13 peptides previously identified in ovarian cancer patients. Among these peptides is one from LRG-1, a protein biomarker increasingly recognized and typically found in the urine of individuals with ovarian cancer. This new technique holds the potential to simultaneously detect a wide array of peptides. Researchers hope that this comprehensive approach, when used alongside other diagnostic information (like the CA-125 blood test, transvaginal ultrasound, and family medical history), could one day provide a more accurate assessment of the presence of early-stage ovarian cancer.

“We are interested in ovarian cancer because it is particularly difficult to detect and requires the development of new sensors that could be made widely available for clinical applications,” said Joseph Reiner, Ph.D. “We envision that our approach could expand beyond ovarian cancer to other types of cancer.”

Related Links:
Virginia Commonwealth University

New
Platinum Member
Flu SARS-CoV-2 Combo Test
OSOM® Flu SARS-CoV-2 Combo Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
Dengue Virus Test
LINEAR Dengue-CHIK

Print article
77 ELEKTRONIKA

Channels

Clinical Chemistry

view channel
Image: PhD student and first author Tarek Eissa has analyzed thousands of molecular fingerprints (Photo courtesy of Thorsten Naeser / MPQ / Attoworld)

Screening Tool Detects Multiple Health Conditions from Single Blood Drop

Infrared spectroscopy, a method using infrared light to study the molecular composition of substances, has been a foundational tool in chemistry for decades, functioning similarly to a molecular fingerprinting... Read more

Hematology

view channel
Image: The Truvian diagnostic platform combines clinical chemistry, immunoassay and hematology testing in a single run (Photo courtesy of Truvian Health)

Automated Benchtop System to Bring Blood Testing To Anyone, Anywhere

Almost all medical decisions are dependent upon laboratory test results, which are essential for disease prevention and the management of chronic illnesses. However, routine blood testing remains limited worldwide.... Read more

Immunology

view channel
Image: The blood test measures lymphocytes  to guide the use of multiple myeloma immunotherapy (Photo courtesy of 123RF)

Simple Blood Test Identifies Multiple Myeloma Patients Likely to Benefit from CAR-T Immunotherapy

Multiple myeloma, a type of blood cancer originating from plasma cells in the bone marrow, sees almost all patients experiencing a relapse at some stage. This means that the cancer returns even after initially... Read more

Microbiology

view channel
Image: Ultra-Rapid Antimicrobial Susceptibility Testing (uRAST) revolutionizing traditional antibiotic susceptibility testing (Photo courtesy of Seoul National University)

Ultra-Rapid Culture-Free Sepsis Test Reduces Testing Time from Days to Hours

Sepsis, a critical emergency condition, results from an overactive inflammatory response to pathogens like bacteria or fungi in the blood, leading to organ damage and the possibility of sudden death.... Read more

Pathology

view channel
Image: The AI model can distinguish different stages of DCIS from inexpensive and readily available breast tissue images (Photo courtesy of David A. Litman/Shutterstock)

AI Model Identifies Breast Tumor Stages Likely To Progress to Invasive Cancer

Ductal carcinoma in situ (DCIS) is a non-invasive type of tumor that can sometimes progress to a more lethal form of breast cancer and represents about 25% of all breast cancer cases. Between 30% and 50%... Read more

Industry

view channel
Image: Beckman Coulter will utilize the ALZpath pTau217 antibody to detect key biomarker for Alzheimer\'s disease on its DxI 9000 immunoassay analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter Licenses Alzpath's Proprietary P-tau 217 Antibody to Develop Alzheimer's Blood Test

Cognitive assessments have traditionally been the primary method for diagnosing Alzheimer’s disease, but this approach has its limitations as symptoms become apparent only after significant brain changes... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.