We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Leverages Tumor Genetics to Predict Patient Response to Chemotherapy

By LabMedica International staff writers
Posted on 23 Jan 2024
Print article
Image: Cervical cancer, shown here at the cellular level, frequently resists treatment (Photo courtesy of National Cancer Institute/Unsplash)
Image: Cervical cancer, shown here at the cellular level, frequently resists treatment (Photo courtesy of National Cancer Institute/Unsplash)

Understanding tumor responses to drugs becomes challenging due to the complex nature of DNA replication, a critical target for many cancer treatments. All cells, including cancer ones, depend on a sophisticated system for DNA replication during cell division. Most chemotherapies aim to disrupt this replication process in rapidly multiplying tumor cells. Given the diverse genetic mutations in tumors, predicting drug resistance remains a formidable challenge. Now, scientists have developed a machine learning algorithm capable of predicting when cancer will resist chemotherapy. This model was specifically tested on cervical cancer, accurately predicting responses to cisplatin, a widely used chemotherapy drug. It efficiently identified tumors likely to resist treatment and shed light on the molecular mechanisms driving this resistance.

Developed by the University of California San Diego School of Medicine (La Jolla, CA, USA), the algorithm assesses how various genetic mutations collectively impact a tumor's response to DNA replication-inhibiting drugs. The research centered around 718 genes typically analyzed in clinical genetic testing for cancer. These genes' mutations formed the basis for the machine learning model, trained using publicly available drug response data. This process led to the identification of 41 molecular complexes — clusters of interacting proteins — where genetic alterations affect drug effectiveness. The model's efficacy was particularly demonstrated in cervical cancer, where approximately 35% of tumors show resistance to treatment.

The algorithm successfully distinguished between tumors that were likely to respond to treatment, correlating with better patient outcomes, and those that were resistant. Importantly, the model also provided insights into its decision-making process by pinpointing the protein complexes driving resistance in cervical cancer. This interpretability feature of the model is crucial not only for its effectiveness but also in establishing reliable AI systems in medical applications.

"Clinicians were previously aware of a few individual mutations that are associated with treatment resistance, but these isolated mutations tended to lack significant predictive value. The reason is that a much larger number of mutations can shape a tumor's treatment response than previously appreciated," said Trey Ideker, PhD, professor in Department of Medicine at UC San Diego of Medicine. "Artificial intelligence bridges that gap in our understanding, enabling us to analyze a complex array of thousands of mutations at once."

"Unraveling an AI model's decision-making process is crucial, sometimes as important as the prediction itself," added Ideker. "Our model's transparency is one of its strengths, first because it builds trust in the model, and second because each of these molecular assemblies we’ve identified becomes a potential new target for chemotherapy. We’re optimistic that our model will have broad applications in not only enhancing current cancer treatment, but also in pioneering new ones."

Related Links:
University of California San Diego

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Pipet Controller
Stripettor Pro
New
C-Reactive Protein Assay
OneStep C-Reactive Protein (CRP) RapiCard InstaTest

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Molecular Diagnostics

view channel
Image: The advanced molecular test is designed to improve diagnosis of a genetic form of COPD (Photo courtesy of National Jewish Health)

Groundbreaking Molecular Diagnostic Test Accurately Diagnoses Major Genetic Cause of COPD

Chronic obstructive pulmonary disease (COPD) and Alpha-1 Antitrypsin Deficiency (AATD) are both conditions that can cause breathing difficulties, but they differ in their origins and inheritance.... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.