We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024
25 Apr 2024 - 27 Apr 2024

AI Algorithm Predicts Diabetic Kidney Disease through Blood Tests

By LabMedica International staff writers
Posted on 01 Jun 2023
Print article
Image: New algorithm can predict diabetic kidney disease (Photo courtesy of Freepix)
Image: New algorithm can predict diabetic kidney disease (Photo courtesy of Freepix)

Diabetes is globally recognized as the main contributor to kidney failure. Notable advancements have been made in devising treatments for kidney disease in diabetic patients. Yet, evaluating an individual's risk for kidney disease based solely on clinical factors can be challenging. Consequently, identifying who is most susceptible to developing diabetic kidney disease is a vital clinical need. Now, scientists have created a computational method that predicts the likelihood of a person with type 2 diabetes developing kidney disease, a common yet severe diabetes complication. This could aid physicians in preventing or improving the management of kidney disease in type 2 diabetes patients.

The new algorithm developed by researchers from Sanford Burnham Prebys (La Jolla, CA, USA) and the Chinese University of Hong Kong (CUHK, Hong Kong) relies on measuring a process known as DNA methylation, which is the accumulation of subtle changes in the DNA. DNA methylation can provide essential insights into gene activation and deactivation and can be easily measured via blood tests.

Utilizing comprehensive data from over 1,200 type 2 diabetes patients registered in the Hong Kong Diabetes Register, the researchers constructed their model which they also tested on an independent group of 326 Native Americans with type 2 diabetes. This confirmed the model's predictive power for kidney disease across diverse populations. The researchers are presently fine-tuning their model and extending its application to address other health and disease-related inquiries, such as why some cancer patients do not respond favorably to certain treatments.

“This study provides a glimpse into the powerful future of predictive diagnostics,” said co-senior author Kevin Yip, Ph.D., a professor and director of Bioinformatics at Sanford Burnham Prebys. “Our team has demonstrated that by combining clinical data with cutting-edge technology, it’s possible to develop computational models to help clinicians optimize the treatment of type 2 diabetes to prevent kidney disease.”

“Our computational model can use methylation markers from a blood sample to predict both current kidney function and how the kidneys will function years in the future, which means it could be easily implemented alongside current methods for evaluating a patient’s risk for kidney disease,” added Yip.

Related Links:
Sanford Burnham Prebys

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article


Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more


view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more


view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more


view channel
Image: ‘Virtual biopsy’ allows clinicians to analyze skin noninvasively (Photo courtesy of Stanford Medicine)

Virtual Skin Biopsy Determines Presence of Cancerous Cells

When dermatologists spot an unusual mark on a patient's skin, they face a choice: monitor it for some time or remove it for biopsy. Similarly, when removing breast tumors, surgeons must send excised tissues... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.