We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us

Download Mobile App


ATTENTION: Due to the COVID-19 PANDEMIC, many events are being rescheduled for a later date, converted into virtual venues, or altogether cancelled. Please check with the event organizer or website prior to planning for any forthcoming event.

New Ultrafast 5-Minute PCR Technology Faster Than Self-Diagnosis Kits

By LabMedica International staff writers
Posted on 24 Feb 2023
Print article
Image: Schematic diagram of PCR temperature cycle using photothermal effect in polymeric microparticles (Photo courtesy of KSIT)
Image: Schematic diagram of PCR temperature cycle using photothermal effect in polymeric microparticles (Photo courtesy of KSIT)

PCR technology which detects target nucleic acids by amplifying the DNA amount has witnessed significant progress in the life sciences field since it was first developed in 1984. The molecular diagnostics technology achieved public familiarity during the COVID-19 pandemic, as PCR is capable of detecting nucleic acids that identify the COVID-19 virus. However, the technical nature of the PCR test makes it impossible for the results to be delivered before one to two hours due to its need for repeated temperature cycles (60~95℃). Now, a new ultrafast PCR technology uses photothermal nanomaterials to shorten the test time by 10-fold, as compared with the time taken by the existing test. The new method can be completed in five minutes and delivers a diagnostic performance that is similar to that of the existing test method.

Photothermal nanomaterials generate heat immediately upon light irradiation and rapidly increase in temperature, although the performance can be difficult to maintain due to their low stability. A research team at Korea Institute of Science and Technology (KIST) has developed a polymer composite that physically holds photothermal nanomaterials and can overcome their instability. By applying it to a PCR system, the team has developed a compact PCR system without a heat plate. Additionally, the researchers have implemented a multiplex diagnostic technology that detects several genes simultaneously, enabling it to distinguish several types of COVID-19 variants in a single reaction.

"Through additional research, we plan to miniaturize the developed ultrafast PCR technology this year, to develop a device that can be utilized anywhere," said Dr. Sang Kyung Kim, Director at the Center for Augmented Safety System with Intelligence, Sensing of the KIST. "While maintaining the strength of PCR as an accurate diagnostic method, we will increase its convenience, field applicability, and promptness, by which we expect that it will become a precision diagnostic device that can be used at primary local clinics, pharmacies, and even at home. In addition, PCR technology is a universal molecular diagnostic technology that can be applied to various diseases other than infectious diseases, so it will become more applicable."

Related Links:

Gold Supplier
Group A Streptococcus Antigen Test
OSOM Strep A Test
Gliadin IgG Test
Gliadin IgG Test System
TNC & RBC Reagents
GloCyte TNC & RBC Reagents
Gold Supplier
D-Dimer Rapid Test

Print article


Clinical Chem.

view channel
Image: Brief schematic diagram of the detection principle and method (Photo courtesy of CAS)

Rapid, Non-Invasive Method Diagnoses Type 2 Diabetes by Sniffing Urinary Acetone

Over 90% of diabetes cases are attributed to Type 2 diabetes (T2D), a prevalent metabolic condition that is expected to impact 380 million individuals globally by 2025. Despite being highly accurate, the... Read more


view channel
Image: A genetic test could guide the use of cancer chemotherapy (Photo courtesy of Pexels)

Genetic Test Predicts Whether Bowel Cancer Patients Can Benefit From Chemotherapy

Late-stage bowel cancer patients usually undergo a series of chemotherapies and targeted medicines for cancer treatment. However, the responses to the last-line chemotherapy treatment trifluridine/tipiracil... Read more


view channel
Image: Sampling a single stool using multiple PCR panels can identify more pathogens rapidly (Photo courtesy of Pexels)

PCR Panels for Acute GI Infections Can Lower Costs, Hospitalization and Antibiotic Use

Acute gastroenteritis impacts adults across all age groups and incurs enormous healthcare expenses. Now, a new study comprising 40,000 hospital visits across various geographic locations has revealed that... Read more


view channel
Image: Artificial intelligence predicts genetics of cancerous brain tumors in under 90 seconds (Photo courtesy of Michigan Medicine)

AI-Based Diagnostic Screening System Predicts Genetics of Cancerous Brain Tumors in 90 Seconds

The diagnosis and treatment of gliomas increasingly rely on molecular classification, as surgical benefits and risks vary depending on a patient's genetic makeup. Complete removal of the tumor can extend... Read more


view channel
Image: Live view of non-fluorescent specimens using the glowscope frame (Photo courtesy of Winona State University)

Device Converts Smartphone into Fluorescence Microscope for Just USD 50

Fluorescence microscopes are utilized to examine specimens labeled with fluorescent stains or expressing fluorescent proteins, like those tagged with green fluorescent protein. However, since these microscopes... Read more


view channel
Image: Roche and Lilly will collaborate on the development of Roche Diagnostics’ Elecsys Amyloid Plasma Panel (Photo courtesy of Roche)

Roche and Eli Lilly Collaborate on Innovative Blood Test for Early Diagnosis of Alzheimer's

Presently, obstacles to timely and precise diagnosis of Alzheimer's disease exist globally, resulting in as many as 75% of individuals exhibiting symptoms but lacking a formal diagnosis.... Read more
Copyright © 2000-2023 Globetech Media. All rights reserved.