We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

BECKMAN COULTER, INC.

Beckman Coulter develops, manufactures and markets laboratory systems, reagents, centrifugation, lab automation, elec... read more Featured Products: More products

Download Mobile App




Nanopore Sequencing Detect Pathogens in Knee Periprosthetic Joint Infection

By LabMedica International staff writers
Posted on 05 Jan 2023
Print article
Image: The MicroScan autoSCAN-4 semi-automated system provides simplified ID/AST testing in a highly reliable and affordable package and confirmed the results of the study (Photo courtesy of Beckman Coulter)
Image: The MicroScan autoSCAN-4 semi-automated system provides simplified ID/AST testing in a highly reliable and affordable package and confirmed the results of the study (Photo courtesy of Beckman Coulter)

The number of total knee arthroplasty (TKA) is currently increasing substantially, and it is expected to increase more than two times in the next decade worldwide. With the increasing number of TKA, the number of prosthetic joint infections (PJIs) is also increasing, and PJI is currently regarded as the most common etiology for revision TKA.

Identification of the infecting pathogen is critical to the successful management of PJI. Currently, microbial culture is the principal diagnostic test for determining the infecting microorganism. Due to the insidious onset of PJI, early and accurate diagnosis is crucial; late diagnosis is known to decrease the chance of saving the prosthesis and the joint function, leading to more bone destruction and difficulty in revision surgery.

Orthopaedic Surgeons at the Seoul National University College of Medicine (Seoul, South Korea) and their colleagues enrolled in a study, 36 patients who had clinical manifestation suspected of PJI. Synovial fluids were aspirated from the affected knee using aseptic technique and tissues specimens were obtained during the surgery. Fluid samples were aspirated from the affected knee of each patient and inoculated separately into conical tube, aerobic and anaerobic BACT/ALERT® culture bottles (bioMérieux, Durham, NC, USA).

Bacterial identification from culture isolates was performed using MicroScan (Beckman Coulter, Inc., Atlanta, GA, USA) for Gram-positive bacteria and the VITEK2 system (bioMérieux, Inc.) for Gram-negative bacteria. The DNA was extracted from the aspirated fluid samples or intraoperative tissue specimens. The full-length 16S rDNA (∼1500 bp) PCR was performed using the Bacterial 16S rDNA PCR Kit (Takara, Tokyo, Japan) for each sample. When the 16S rDNA PCR result was positive nanopore amplicon sequencing (Oxford Nanopore Technologies, Oxford, UK) was then performed for up to 3 hours. The results of amplicon sequencing were compared to those of conventional culture studies.

The investigators reported that of the 36 patients enrolled, 22 were classified as true infections according to the MSIS criteria whereas 14 were considered uninfected. Among the 22 PJI cases, 19 cases were culture positive (CP-PJI) while three cases were culture negative (CN-PJI). In 14 of 19 (73.7 %) CP- PJI cases, 16S sequencing identified concordant bacteria with conventional culture studies with a significantly shorter turnaround time. In some cases, nanopore 16S sequencing was superior to culture studies in the species-level identification of pathogen and detection of polymicrobial infections. Altogether, in the majority of PJI candidate patients (32 of 36, 88.9 %), 16S sequencing achieved identical results to cultures studies with a significantly reduced turnaround time (100.9 ± 32.5 hours versus 10.8 ± 7.7 hours).

The authors concluded that Nanopore 16S sequencing was found to be particularly useful for pathogen identification in knee PJI. Although the sensitivity was not superior to culture studies, the nanopore 16S sequencing was much faster and species-level identification and detection of polymicrobial infections were superior to culture studies. The study was published in the December 2022 issue of the International Journal of Medical Microbiology.

Related Links:
Seoul National University College of Medicine
bioMérieux
Beckman Coulter
Takara
Oxford Nanopore Technologies 

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.