We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Method Enables Targeted Profiling of Human Extrachromosomal DNA

By LabMedica International staff writers
Posted on 05 Dec 2022

Oncogene amplification is a key cancer-driving mechanism and frequently occurs on circular extrachromosomal DNA (ecDNA). More...

ecDNA oncogene amplifications are present in half of human cancer types and up to one-third of tumor samples and are associated with poor patient outcomes.

Given the prevalence of ecDNA in cancer, there is an urgent need for better characterization of unique genetic and epigenetic features of ecDNA to understand how it may differ from chromosomal DNA and obtain clues about how it is formed and maintained in tumors.

A large team of Molecular Geneticists led by those at Stanford University (Stanford, CA, USA) used CRISPR-CATCH, a CRISPR-Cas9-based method that was previously developed for isolating bacterial chromosomal segments. Mechanistically, CRISPR-CATCH works by in vitro CRISPR-Cas9 treatment followed by pulsed-field gel electrophoresis (PFGE) of agarose-entrapped genomic DNA. The method starts by embedding the genomic sample in agarose plugs to prevent DNA shearing. Then the encapsulated sample is treated with CRISPR-Cas9 and a single guide RNA (sgRNA), which will make a precise cut to linearize the ecDNA.

The investigators reported that overall, the study showed that CRISPR-CATCH led to "massive enrichment" of the ecDNA. In particular, when the team tested CRISPR-CATCH targeting the EGFR locus on patient-derived glioblastoma neurosphere (GBM39) cells, the method enriched the ecDNA by 30-fold, resulting in ultrahigh sequencing coverage downstream. Similarly, the authors demonstrated that CRISPR-CATCH can also isolate targeted ecDNAs on flash-frozen patient tumor samples. In addition, the study showed that CRISPR-CATCH enabled the team to study ecDNA epigenomic profiles, such as DNA cytosine methylation (5mC), when paired with nanopore sequencing. It also enabled them to identify the chromosomal origins of ecDNA by phasing the oncogenic variants.

Howard Chang, MD, PhD, a Professor of Genetics and senior author of the study, said, “Extrachromosomal DNA represents a really important challenge for cancer patients. A lot of the most important cancer-causing genes are transcribed from extrachromosomal DNAs. Right now, we rely on cancer whole-genome sequencing data, which obviously is routinely done for cancer patients, so we know what the focal amplification is and that guides the targeted cutting. There might be a way to even bypass that step in the future.”

The authors concluded that they have demonstrated that ecDNA profiling using CRISPR-CATCH can provide insights into ecDNA structure, diversity, origin and epigenomic landscape. As such, CRISPR-CATCH presents an opportunity for a multitude of molecular studies that will help elucidate how ecDNA oncogene amplifications are regulated in cancer cells. The study was published on October 17, 2022 in the journal Nature Genetics.

Related Links:
Stanford University


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Collection and Transport System
PurSafe Plus®
Laboratory Software
ArtelWare
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: The collaboration aims to improve access to Hb variant testing with the Gazelle POC diagnostic platform (Photo courtesy of Hemex Health)

Terumo BCT and Hemex Health Collaborate to Improve Access to Testing for Hemoglobin Disorders

Millions of people worldwide living with sickle cell disease and other hemoglobin disorders experience delayed diagnosis and limited access to effective care, particularly in regions where testing is scarce.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.