We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Biomarker Predicts Potential Benefit of Checkpoint Inhibitor Therapy for Brain Cancer Patients

By LabMedica International staff writers
Posted on 06 Dec 2021
A phosphorylated form of ERK (extracellular signal-regulated kinase) protein has been identified as a biomarker that may be used to predict which brain cancer patients might benefit from checkpoint inhibitor therapy. More...


Checkpoint inhibitor therapy (PD-1 immune checkpoint blockade) is a form of cancer treatment immunotherapy, which targets immune checkpoints, key regulators of the immune system that stimulate or inhibit its actions. Tumors can use these checkpoints to protect themselves from attacks by the immune system. Checkpoint therapy can block inhibitory checkpoints, restoring immune system function. However, most cancer patients either do not respond to immune checkpoint blockade or develop resistance to it, often because of acquired mutations that impair antigen presentation.

In this regard, only a subset of recurrent glioblastoma (rGBM) responds to anti-PD-1 immunotherapy. This cancer comprises about 30% of all brain tumors and central nervous system tumors, and 80% of all malignant brain tumors. These tumors are heavily infiltrated with immune cells of myeloid origin.

Investigators at Northwestern University (Chicago, IL, USA) examined whether activation of the MAPK/ERK signaling pathway was associated with response to PD-1 inhibition in rGBM.

Results of this study revealed that immunohistochemistry for ERK1/2 phosphorylation (p-ERK), a marker of MAPK/ERK pathway activation, was predictive of overall survival following adjuvant PD-1 blockade in two independent rGBM patient cohorts. Furthermore, single-cell RNA-sequencing and multiplex immunofluorescence analyses revealed that p-ERK was mainly localized in tumor cells. GBMs were found to contain tumor-infiltrating myeloid cells and microglia with elevated expression of MHC class II and associated genes. These findings indicated that ERK1/2 activation in rGBM was predictive of response to PD-1 blockade and was associated with a distinct myeloid cell phenotype.

“This is an important breakthrough for patients who have not had an effective treatment in the cancer drug arsenal available to them,” said senior author Dr. Adam Sonabend, associate professor of neurosurgery at Northwestern University. “It might ultimately influence the decision on how to treat glioblastoma patients and which patients should get these drugs to prolong their survival.”

The study was published in the November 29, 2021, online edition of the journal Nature Cancer.

Related Links:
Northwestern University


Gold Member
Quantitative POC Immunoassay Analyzer
EASY READER+
Collection and Transport System
PurSafe Plus®
New
Urine Chemistry Control
Dropper Urine Chemistry Control
New
Human Estradiol Assay
Human Estradiol CLIA Kit
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The VENTANA HER2 (4B5) test is now CE-IVDR approved (Photo courtesy of Roche)

Companion Diagnostic Test Identifies HER2-Ultralow Breast Cancer and Biliary Tract Cancer Patients

Breast cancer is the most common cancer in Europe, with more than 564,000 new cases and 145,000 deaths annually. Metastatic breast cancer is rising in younger populations and remains the leading cause... Read more

Pathology

view channel
Image: An adult fibrosarcoma case report has shown the importance of early diagnosis and targeted therapy (Photo courtesy of Sultana and Sailaja/Oncoscience)

Accurate Pathological Analysis Improves Treatment Outcomes for Adult Fibrosarcoma

Adult fibrosarcoma is a rare and highly aggressive malignancy that develops in connective tissue and often affects the limbs, trunk, or head and neck region. Diagnosis is complex because tumors can mimic... Read more

Technology

view channel
Image: Conceptual design of the CORAL capsule for microbial sampling in the small intestine (H. Mohammed et al., Device (2025). DOI: 10.1016/j.device.2025.100904)

Coral-Inspired Capsule Samples Hidden Bacteria from Small Intestine

The gut microbiome has been linked to conditions ranging from immune disorders to mental health, yet conventional stool tests often fail to capture bacterial populations in the small intestine.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.