We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Werfen

Download Mobile App




Biomarker Predicts Potential Benefit of Checkpoint Inhibitor Therapy for Brain Cancer Patients

By LabMedica International staff writers
Posted on 06 Dec 2021
A phosphorylated form of ERK (extracellular signal-regulated kinase) protein has been identified as a biomarker that may be used to predict which brain cancer patients might benefit from checkpoint inhibitor therapy. More...


Checkpoint inhibitor therapy (PD-1 immune checkpoint blockade) is a form of cancer treatment immunotherapy, which targets immune checkpoints, key regulators of the immune system that stimulate or inhibit its actions. Tumors can use these checkpoints to protect themselves from attacks by the immune system. Checkpoint therapy can block inhibitory checkpoints, restoring immune system function. However, most cancer patients either do not respond to immune checkpoint blockade or develop resistance to it, often because of acquired mutations that impair antigen presentation.

In this regard, only a subset of recurrent glioblastoma (rGBM) responds to anti-PD-1 immunotherapy. This cancer comprises about 30% of all brain tumors and central nervous system tumors, and 80% of all malignant brain tumors. These tumors are heavily infiltrated with immune cells of myeloid origin.

Investigators at Northwestern University (Chicago, IL, USA) examined whether activation of the MAPK/ERK signaling pathway was associated with response to PD-1 inhibition in rGBM.

Results of this study revealed that immunohistochemistry for ERK1/2 phosphorylation (p-ERK), a marker of MAPK/ERK pathway activation, was predictive of overall survival following adjuvant PD-1 blockade in two independent rGBM patient cohorts. Furthermore, single-cell RNA-sequencing and multiplex immunofluorescence analyses revealed that p-ERK was mainly localized in tumor cells. GBMs were found to contain tumor-infiltrating myeloid cells and microglia with elevated expression of MHC class II and associated genes. These findings indicated that ERK1/2 activation in rGBM was predictive of response to PD-1 blockade and was associated with a distinct myeloid cell phenotype.

“This is an important breakthrough for patients who have not had an effective treatment in the cancer drug arsenal available to them,” said senior author Dr. Adam Sonabend, associate professor of neurosurgery at Northwestern University. “It might ultimately influence the decision on how to treat glioblastoma patients and which patients should get these drugs to prolong their survival.”

The study was published in the November 29, 2021, online edition of the journal Nature Cancer.

Related Links:
Northwestern University


Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Gold Member
Automatic CLIA Analyzer
Shine i9000
Capillary Blood Collection Tube
IMPROMINI M3
Automated Chemiluminescence Immunoassay Analyzer
MS-i3080
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Research has linked platelet aggregation in midlife blood samples to early brain markers of Alzheimer’s (Photo courtesy of Shutterstock)

Platelet Activity Blood Test in Middle Age Could Identify Early Alzheimer’s Risk

Early detection of Alzheimer’s disease remains one of the biggest unmet needs in neurology, particularly because the biological changes underlying the disorder begin decades before memory symptoms appear.... Read more

Microbiology

view channel
Image: The SMART-ID Assay delivers broad pathogen detection without the need for culture (Photo courtesy of Scanogen)

Rapid Assay Identifies Bloodstream Infection Pathogens Directly from Patient Samples

Bloodstream infections in sepsis progress quickly and demand rapid, precise diagnosis. Current blood-culture methods often take one to five days to identify the pathogen, leaving clinicians to treat blindly... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.