We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Nanodiamonds Dramatically Boost Immunoassay Sensitivity

By LabMedica International staff writers
Posted on 08 Dec 2020
Incorporation of a specific class of nanodiamond into lateral flow immunoassays was shown to increase the sensitivity of this method by at least five orders of magnitude.

Nanodiamonds or diamond nanoparticles are diamonds with a size below one micrometer, which are commercially produced by detonation synthesis. More...
A class of fluorescent nanodiamonds containing nitrogen-vacancy defects has attractive properties for in vitro biosensing, including brightness, low cost, and selective manipulation of their emission.

Investigators at University College London (United Kingdom) studied fluorescent nanodiamonds as an ultrasensitive label for in vitro diagnostics, using a microwave field to modulate emission intensity and frequency-domain analysis to separate the signal from background autofluorescence, which typically limits sensitivity. Since the quantum properties of fluorescent nanodiamonds allow their emission to be selectively modulated, the signal can be fixed at a set frequency using a microwave field and can be efficiently separated from the background fluorescence.

Using lateral flow immunoassay as the experimental system, the investigators achieved a detection limit of 8.2 × 10−19 molar for a biotin–avidin model, 100,000 times more sensitive than that obtained using gold nanoparticles. Furthermore, single-copy detection of HIV-1 RNA could be achieved with the addition of a 10-minute isothermal recombinase polymerase amplification step. This method was then demonstrated using a clinical plasma sample with an extraction step.

Senior author Dr. Rachel McKendry, professor of biomedical nanotechnology at University College London, said, "Our proof-of-concept study shows how quantum technologies can be used to detect ultralow levels of virus in a patient sample, enabling much earlier diagnosis. We have focused on the detection of HIV, but our approach is very flexible and can be easily adapted to other diseases and biomarker types. We are working on adapting our approach to COVID-19. We believe that this transformative new technology will benefit patients and protect populations from infectious diseases."

The next step will be to adapt the assay for use a smartphone or portable fluorescence reader, which would allow the test to be performed in low-resource settings.

The use of nanodiamonds to increase the sensitivity of lateral flow assays was described in the November 25, 2020, online edition of the journal Nature.

Related Links:
University College London


Gold Member
Immunochromatographic Assay
CRYPTO Cassette
Collection and Transport System
PurSafe Plus®
Hemodynamic System Monitor
OptoMonitor
New
Gold Member
Hybrid Pipette
SWITCH
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New evidence shows viscoelastic testing can improve assessment of blood clotting during postpartum hemorrhage (Photo courtesy of 123RF)

Viscoelastic Testing Could Improve Treatment of Maternal Hemorrhage

Postpartum hemorrhage, severe bleeding after childbirth, remains one of the leading causes of maternal mortality worldwide, yet many of these deaths are preventable. Standard care can be hindered by delays... Read more

Immunology

view channel
Image: The CloneSeq-SV approach can allow researchers to study how cells within high-grade serous ovarian cancer change over time (Photo courtesy of MSK)

Blood Test Tracks Treatment Resistance in High-Grade Serous Ovarian Cancer

High-grade serous ovarian cancer (HGSOC) is often diagnosed at an advanced stage because it spreads microscopically throughout the abdomen, and although initial surgery and chemotherapy can work, most... Read more

Industry

view channel
Image: Private equity firms Blackstone and TPG have joined forces to acquire Hologic in a major healthcare deal (Photo courtesy of Hologic)

Hologic to be Acquired by Blackstone and TPG

Hologic (Marlborough, MA, USA) has entered into a definitive agreement to be acquired by funds managed by Blackstone (New York, NY, USA) and TPG (San Francisco, CA, USA) in a transaction valued at up to... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.