We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Illumina

Illumina develops, manufactures and markets integrated systems for the analysis of genetic variations and biological ... read more Featured Products: More products

Download Mobile App




Genome Sequencing Evaluated in Children with Unexplained Medical Complexity

By LabMedica International staff writers
Posted on 08 Oct 2020
Print article
Image: The HiSeq X Series incorporates patterned flow cell technology to generate an exceptional level of throughput for whole-genome sequencing. (Photo courtesy of Illumina).
Image: The HiSeq X Series incorporates patterned flow cell technology to generate an exceptional level of throughput for whole-genome sequencing. (Photo courtesy of Illumina).
Children with medical complexity (CMC) have at least one chronic condition, depend on a technological tool like a ventilator or require intravenous nutrition or drugs, are under the care of multiple subspecialists, and have substantial healthcare use.

Collectively, rare genetic conditions are an important cause of severe pediatric morbidity and mortality. A genetic diagnosis can inform prognosis, anticipatory care, management, and reproductive planning. Rapid genome sequencing as a first-tier test in neonatal and pediatric intensive care units has been associated with a high diagnostic yield and potential health care cost savings.

A team of medical geneticists from The Hospital for Sick Children (Toronto, ON, Canada) and some colleagues recruited families taking part in a structured complex care program. Following medical record review, 143 families met eligibility criteria, and 54 of them were interested and met additional criteria. Patients were eligible if they were thought to have an underlying genetic condition that had not been identified through conventional genetic testing. In all, 138 individuals from 49 families underwent genome sequencing, including 40 parent-child trios.

Genome sequencing was performed using established methods, with high-quality DNA extracted from whole blood. In brief, library preparation was performed from 500 ng of DNA using the TruSeq Nano DNA Library Preparation Kit (Illumina Inc, San Diego, CA, USA) omitting the polymerase chain reaction amplification step, followed by sequencing on an Illumina HiSeq X platform. Single-nucleotide variations (SNVs) and indels were detected using Genome Analysis Toolkit, version 3.4-46 or version 3.7 (Broad Institute, Cambridge, MA, USA).

Genome sequencing detected all genomic variation previously identified by conventional genetic testing. A total of 15 probands (30.6%) received a new primary molecular genetic diagnosis after genome sequencing. Three individuals had novel diseases and an additional nine had either ultra-rare genetic conditions or rare genetic conditions with atypical features. At least 11 families received diagnostic information that had clinical management implications beyond genetic and reproductive counseling. One patient, for instance, had a maternally inherited single-exon duplication in the KDM6A gene on the X chromosome that causes Kabuki syndrome, which was not detected by chromosomal microarray analysis, exome sequencing, or a multiplex ligation-dependent probe amplification test of the gene.

The authors concluded that genome sequencing has high analytical and clinical validity and can result in new diagnoses in CMC even in the setting of extensive prior investigations. This clinical population may be enriched for ultra-rare and novel genetic disorders. Genome sequencing is a potentially first-tier genetic test for CMC. The study was published on September 22, 2020 in the journal JAMA Network Open.



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.