Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Events

10 Feb 2026 - 13 Feb 2026
17 Apr 2026 - 21 Apr 2026

Fetal Genetic Variants Implicated in Spontaneous Preterm Birth Risk

By LabMedica International staff writers
Posted on 03 Jul 2019
Preterm live births that take place before 37 completed weeks of gestation and even as early as 22–24 weeks are a global problem. More...
Up to 11.1% (15 million babies) of all births worldwide occur prematurely, and approximately 45% to 50% of them are idiopathic or spontaneous.

Many pathways and cellular processes are reported to be associated with Spontaneous Preterm Birth (SPTB), including response to infection, regulation of inflammation, stress, and other immunologically mediated processes. A gene has been identified involved in axon guidance, neuronal migration, and inflammation, that appear to coincide with spontaneous preterm birth.

An international team of Finnish and American scientists led by the Oulu University Hospital (Oulu, Finland) studied a population that included 260 SPTB cases (139 male and 121 female infants) and 9,630 controls (4,055 males and 5,575 females). The cases were very preterm infants born between 25 and 30 weeks of gestation and were clinically defined as SPTB in 2005–2008. In the Finnish cohorts, SPTB was defined as birth occurring after spontaneous onset of labor at <36 completed weeks + 1 day of gestation.

Umbilical cord blood, umbilical cord tissue, or saliva was obtained from the study subjects. Commercial kits were used to extract genomic DNA from blood, or Puregene Blood Core Kit and cord tissue using Qiagen’s Gentra Puregene Tissue Kit. Genome-wide SNP genotyping was performed with the Infinium HumanCoreExome BeadChip. In total, 18 placental samples were analyzed by immunohistochemistry.

The team reported that after replication testing in hundreds more babies born particularly prematurely and thousands of control infants, they were left with a single nucleotide polymorphism (SNP) in the SLIT2 gene that was significantly associated with spontaneous preterm birth, as well as suggestive associations for SNPs in other axon guidance genes. The team's follow-up gene expression, localization, and functional experiments indicated that SLIT2 and ROBO1, which encodes SLIT2's receptor protein, are expressed at higher-than-usual levels in certain parts of the placenta for infants experiencing spontaneous preterm birth.

The most significant association with spontaneous birth involved a SNP called rs116461311 in SLIT2, prompting a series of immunohistochemistry, qRT-PCR, and gene silencing experiments on placental samples or cells that the scientists used to decode SLIT2-ROBO1 interactions and their consequences for birth timing. The authors concluded that based on the currently available evidence they propose that activation of SLIT2-ROBO1 expression and signaling in [placental] trophoblast cells contributes to inflammatory and immune activation, which in turn leads to early labor and preterm birth. The study was published on June 13, 2019, in the journal PLOS Genetics.

Related Links:
Oulu University Hospital


Gold Member
Fibrinolysis Assay
HemosIL Fibrinolysis Assay Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automated MALDI-TOF MS System
EXS 3000
Gel Cards
DG Gel Cards
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.