We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
GLOBE SCIENTIFIC, LLC

Download Mobile App




Detection System Used for Monitoring Small Molecules

By LabMedica International staff writers
Posted on 15 Oct 2018
A biological nanopore-based detection system can continuously monitor glucose and asparagine levels in microliter samples of blood, urine, saliva, or other body fluid in real-time.

When a nanopore is present in an electrically insulating membrane, it can be used as a single-molecule detector. More...
It can be a biological protein channel in a high electrical resistance lipid bilayer, a pore in a solid-state membrane, or a hybrid of these – a protein channel set in a synthetic membrane. The detection principle is based on monitoring the ionic current passing through the nanopore as a voltage is applied across the membrane.

Investigators at the University of Groningen (The Netherlands) had shown previously that the biological nanopore cytolysin A (ClyA) could be used to monitor the function of proteins when they were lodged inside the nanopore. In the current study, using proteins from a protein family that in cells recognize an enormous variety of molecules, they demonstrated ClyA nanopores capable of reporting the concentration of glucose and asparagine directly from samples of blood, sweat, and other bodily fluids. Conveniently, no sample preparation was required, and the concentration of the metabolite could be monitored continuously.

"The substrate-binding proteins are on one side of the membrane and the sample is on the other. As the pores are very narrow, the mixing only happens inside the nanopore, so the system can operate continuously," said senior author Dr. Giovanni Maglia, associate professor of chemical biology at the University of Groningen. "Real-time glucose sensors are available, but the asparagine analysis normally takes days. If we can create a system with proteins that are specific to hundreds of different metabolites, we will have created a truly disruptive new technology for medical diagnostics."

The nanopore detection system was described in the October 5, 2018, online edition of the journal Nature Communications.

Related Links:
University of Groningen


New
Gold Member
Blood Gas Analyzer
Stat Profile pHOx
Serological Pipet Controller
PIPETBOY GENIUS
New
Celiac Disease Test
Anti-Gliadin IgG ELISA
New
Integrated Biochemical & Immunological System
Biolumi CX8
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: A simple blood test could replace surgical biopsies for early detecion of heart transplant rejection (Photo courtesy of Shutterstock)

Blood Test Detects Organ Rejection in Heart Transplant Patients

Following a heart transplant, patients are required to undergo surgical biopsies so that physicians can assess the possibility of organ rejection. Rejection happens when the recipient’s immune system identifies... Read more

Pathology

view channel
These images illustrate how precision oncology Organ Chips recapitulate individual patients’ responses to chemotherapy (Photo courtesy of Wyss Institute at Harvard University)

Cancer Chip Accurately Predicts Patient-Specific Chemotherapy Response

Esophageal adenocarcinoma (EAC), one of the two primary types of esophageal cancer, ranks as the sixth leading cause of cancer-related deaths worldwide and currently lacks effective targeted therapies.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.