We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Mutations Missed in Congenital Disease Screening

By LabMedica International staff writers
Posted on 06 Jun 2018
Print article
Image: The Infinium Methylation EPIC kit (Photo courtesy of Illumina).
Image: The Infinium Methylation EPIC kit (Photo courtesy of Illumina).
A type of genetic aberration has been identified as the cause of certain neurodevelopmental disorders and congenital diseases, such as autism and congenital heart disease, which are undetectable by conventional genetic testing.

The discovery that genetic mutations called epivariations are involved in these diseases could lead to more advanced diagnostic tools for many congenital and neurodevelopmental disorders. Epivariations are variations in the DNA molecule that do not affect the basic composition of the DNA molecule, called the DNA sequence, but result in a change in gene function.

An international team of scientists led by those at Icahn School of Medicine (New York, NY, USA) studied the genetic profiles of 489 patients with known neurodevelopmental or congenital disorders, who had all previously undergone genetic testing that identified no DNA mutations. These disorders had long been thought to have genetic origins, so the scientists suspected that even though conventional testing had not discovered a genetic cause for them, epivariations in their DNA could be present, resulting in gene dysfunction leading to disease.

To assess for epivariations, the team conducted methylation profiling, determining the DNA methylation within each patient's genome, finding epigenetic mutations that could be the cause of disease in approximately 20% of the studied cohort. Genome-wide DNA methylation profiling was performed using Human Methylation 450k BeadChips. Furthermore, in analyzing more than 5,000 genome profiles of individuals with no known diagnosis of congenital disease or neurodevelopmental disorder, the team discovered epigenetic mutations to be relatively common, and that they could typically be identified via a blood test.

The authors concluded that their study showed that epivariations are a relatively common feature in the human genome, that some are associated with changes in the local gene expression, and raise the possibility that they may be implicated in the etiology of developmental disorders. Andrew Sharp, PhD, an Associate Professor and lead investigator of the study, said, “These findings can open up a whole new world in what we know about disease and genetic profiling. Investigating DNA methylation when profiling genomes for disease mutations could help us uncover causative defects in congenital and neurodevelopmental diseases that have eluded us for years.” The study was published on May 25, 2018, in the journal Nature Communications.

Related Links:
Icahn School of Medicine

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The ePlex system has been rebranded as the cobas eplex system (Photo courtesy of Roche)

Enhanced Rapid Syndromic Molecular Diagnostic Solution Detects Broad Range of Infectious Diseases

GenMark Diagnostics (Carlsbad, CA, USA), a member of the Roche Group (Basel, Switzerland), has rebranded its ePlex® system as the cobas eplex system. This rebranding under the globally renowned cobas name... Read more

Pathology

view channel
Image: The Aperio GT 450 DX has received US FDA 510(k) clearance (Photo courtesy of Leica Biosystems)

Use of DICOM Images for Pathology Diagnostics Marks Significant Step towards Standardization

Digital pathology is rapidly becoming a key aspect of modern healthcare, transforming the practice of pathology as laboratories worldwide adopt this advanced technology. Digital pathology systems allow... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.