We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Mutations Missed in Congenital Disease Screening

By LabMedica International staff writers
Posted on 06 Jun 2018
A type of genetic aberration has been identified as the cause of certain neurodevelopmental disorders and congenital diseases, such as autism and congenital heart disease, which are undetectable by conventional genetic testing.

The discovery that genetic mutations called epivariations are involved in these diseases could lead to more advanced diagnostic tools for many congenital and neurodevelopmental disorders. More...
Epivariations are variations in the DNA molecule that do not affect the basic composition of the DNA molecule, called the DNA sequence, but result in a change in gene function.

An international team of scientists led by those at Icahn School of Medicine (New York, NY, USA) studied the genetic profiles of 489 patients with known neurodevelopmental or congenital disorders, who had all previously undergone genetic testing that identified no DNA mutations. These disorders had long been thought to have genetic origins, so the scientists suspected that even though conventional testing had not discovered a genetic cause for them, epivariations in their DNA could be present, resulting in gene dysfunction leading to disease.

To assess for epivariations, the team conducted methylation profiling, determining the DNA methylation within each patient's genome, finding epigenetic mutations that could be the cause of disease in approximately 20% of the studied cohort. Genome-wide DNA methylation profiling was performed using Human Methylation 450k BeadChips. Furthermore, in analyzing more than 5,000 genome profiles of individuals with no known diagnosis of congenital disease or neurodevelopmental disorder, the team discovered epigenetic mutations to be relatively common, and that they could typically be identified via a blood test.

The authors concluded that their study showed that epivariations are a relatively common feature in the human genome, that some are associated with changes in the local gene expression, and raise the possibility that they may be implicated in the etiology of developmental disorders. Andrew Sharp, PhD, an Associate Professor and lead investigator of the study, said, “These findings can open up a whole new world in what we know about disease and genetic profiling. Investigating DNA methylation when profiling genomes for disease mutations could help us uncover causative defects in congenital and neurodevelopmental diseases that have eluded us for years.” The study was published on May 25, 2018, in the journal Nature Communications.

Related Links:
Icahn School of Medicine


Gold Member
Automatic Hematology Analyzer
DH-800 Series
Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
New
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Sickle cell disease patients with higher levels of RMVs, AMVs, and EMVs were found to have more severe disease (Photo courtesy of Adobe Stock)

Microvesicles Measurement Could Detect Vascular Injury in Sickle Cell Disease Patients

Assessing disease severity in sickle cell disease (SCD) remains challenging, especially when trying to predict hemolysis, vascular injury, and risk of complications such as vaso-occlusive crises.... Read more

Microbiology

view channel
Image: The rapid diagnostic test is being piloted across three UK hospitals (Photo courtesy of Imperial College Healthcare)

15-Minute Blood Test Diagnoses Life-Threatening Infections in Children

Distinguishing minor childhood illnesses from potentially life-threatening infections such as sepsis or meningitis remains a major challenge in emergency care. Traditional tests can take hours, leaving... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.