We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Metagenomic Sequencing Can Diagnose Cases of Meningitis

By LabMedica International staff writers
Posted on 01 May 2018
Subacute and chronic meningitis are diagnostically challenging given the wide range of potential infectious, autoimmune, neoplastic, paraneoplastic, parameningeal, and toxic causes. More...
Securing a final diagnosis can require weeks or months of testing or remain unsolved, necessitating empirical treatment approaches that may be ineffective or even harmful.

Unlike traditional testing for specific microbes or categories of infection, metagenomic next-generation sequencing (mNGS) of cerebrospinal fluid (CSF) or brain tissue screens for nearly all potential central nervous system (CNS) infections and can identify novel or unexpected pathogens. However, mNGS data require careful analysis to determine which, if any, of the identified microbes represent a true pathogen rather than environmental contamination.

A large team of scientists led by those at University of California, San Francisco (San Francisco, CA, USA) enrolled seven patients who were recruited between September 2013 and March 2017 as part of a larger study applying mNGS to biological samples from patients with suspected neuroinflammatory disease. The seven participants enrolled in the present study had subacute or chronic leptomeningitis with or without encephalitis.

The team performed metagenomic next-generation sequencing on total RNA extracted from surplus CSF (250-500 μL), and one participant also had mNGS performed on total RNA extracted from snap frozen surplus tissue (<50 mg) obtained from a lumbar meningeal biopsy. Paired-end sequences of 125 to 150 base pairs were analyzed using a previously described rapid computational pathogen detection pipeline consisting of open-source components.

To distinguish putative pathogens from contaminating microbial sequences derived from skin, collection tubes, laboratory reagents, or the environment, a composite background model of metagenomic data was used. This model incorporated 24 water control samples and 94 CSF samples from patients with noninfectious diagnoses, including 21 patients with chronic meningitis with or without encephalitis.

The seven participants ranged in age from 10 to 55 years, and three (43%) were female. A parasitic worm, Taenia solium in two participants, a virus (HIV-1), and four fungi: Cryptococcus neoformans, Aspergillus oryzae, Histoplasma capsulatum, and Candida dubliniensis were identified among the seven participants by using mNGS.

The authors concluded that diverse microbial pathogens were identified by mNGS in the CSF of patients with diagnostically challenging subacute or chronic meningitis, including a case of subarachnoid neurocysticercosis that defied diagnosis for one year, the first reported case of CNS vasculitis caused by Aspergillus oryzae, and the fourth reported case of C. dubliniensis meningitis. The study was published on April 16, 2018, in the journal JAMA Neurology.

Related Links:
University of California, San Francisco


New
Gold Member
Automated MALDI-TOF MS System
EXS 3000
Collection and Transport System
PurSafe Plus®
6 Part Hematology Analyzer with RET + IPF
Mispa HX 88
New
Homocysteine Quality Control
Liquichek Homocysteine Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: A schematic illustrating the coagulation cascade in vitro (Photo courtesy of Harris, N., 2024)

ADLM’s New Coagulation Testing Guidance to Improve Care for Patients on Blood Thinners

Direct oral anticoagulants (DOACs) are one of the most common types of blood thinners. Patients take them to prevent a host of complications that could arise from blood clotting, including stroke, deep... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.