Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Esophageal Cancer GWAS Leads to Risk Variants

By LabMedica International staff writers
Posted on 15 Feb 2018
Genome-wide association studies have identified common variants associated with risk of esophageal squamous cell carcinoma; however, these common variants cannot explain all heritability of esophageal cancer.

New germline contributors to esophageal squamous cell carcinoma (ESCC) risk have been revealed, including a low-frequency change to the Cytochrome P450 Family 26 Subfamily B Member 1, (CYP26B1) drug metabolism gene that appears to affect blood serum levels of a tumor suppressor called all-trans retinoic acid (atRA).

Scientists at the Chinese Academy of Medical Sciences (Beijing, China) and their colleagues used exome sequences for more than 3,700 individuals with ESCC and nearly 3,900 individuals without. More...
They looked for single-nucleotide polymorphisms (SNPs) or low-frequency variants associated with risk of the disease, which is especially common in parts of China. From these data, they narrowed in on half a dozen risk sites that could be replicated in another 7,002 cases and 8,757 controls, including three common SNPs and three low-frequency variants.

The team used Illumina HumanExome BeadChip arrays to profile low-frequency protein-coding variants in the ESCC cases and the controls from Beijing. After excluding samples with insufficient or low-quality data, they were left comparing exome patterns for 3,714 of the ESCC cases and 3,880 controls, an analysis that led to 30 suspicious variants. The team attempted to verify the potential ESCC risk variants with OpenArray- or TaqMan-based genotyping on individuals from two replication cohorts: 3,120 ESCC cases and 3,919 controls from Wuhan province and another 3,882 individuals with ESCC and 4,838 without from the Chinese province of Hebei.

The scientists uncovered six new risk variants at four sites in or around the CCHCR1, TCN2, TNXB, LTA, CYP26B1, and FASN genes. Three of the associations at the TCN2, CYP26B1, and FASN gene loci, were based on low-frequency variants that appeared to have higher-than-usual effect sizes. An ESCC-associated variant at CYP26B1, called rs138478634, had particularly close ties to ESCC risk in individuals with a history of smoking and/or drinking, although the team noted that rs138478634 was not linked to smoking or drinking status in control individuals. Through a series of follow-up cell line and patient serum expression profiling experiments, the group saw lower-than-usual levels of the atRA tumor suppressor in cells or individuals pumping out the rs138478634 variant-containing version of CYP26B1.

The authors concluded that results of the new study extended previous findings and advanced our understanding of the genetic etiology of ESCC, which might be useful for risk assessment, early detection, and targeted treatment of ESCC. The study was published on January 29, 2018, in the journal Nature Genetics.

Related Links:
Chinese Academy of Medical Sciences


Gold Member
Hematology Analyzer
Medonic M32B
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Gold Member
Hematology System
Medonic M16C
Urine Chemistry Control
Dropper Urine Chemistry Control
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.