We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Whole Genome Sequencing Identifies New Autism Signature

By LabMedica International staff writers
Posted on 25 Oct 2017
Current genetic tests for autism scan broad portions of the genome for DNA insertions or deletions that have previously been linked to autism. More...
Other tests look for changes in the DNA building blocks of certain genes, but these tests flag only about 10% to 30% of cases.

Autism has genetic roots, but most cases can not be explained by current genetic tests.An analysis of the complete genomes of 2,064 people reveals that multiple genetic variations could contribute to autism. The work suggests that scanning whole genomes may one day be useful for clinical diagnostics.

Scientists at the Howard Hughes Medical Institute (Seattle, WA, USA) and their colleagues sequenced the genomes of 516 autistic children with no family history of autism, and no genetic anomalies detected by current tests. The team also sequenced the genomes of the children's parents and an unaffected sibling equaling 2,064 people in total. They analyzed each family's data, looking for genetic variations that occurred only in children with autism. Genomes were sequenced at the New York Genome Center (NYGC) using 1 μg of DNA, an Illumina polymerase chain reaction (PCR)-free library protocol, and sequencing on the Illumina X Ten platform. The team used the Quick Change Lightning Multi Site-Directed Mutagenesis Kit.

The investigators identified genetic changes that disrupted gene function and led to altered protein production, and genetic deletions too small to see with current tests. They also found changes in areas of the genome that do not contain genes, but are responsible for turning genes on. They compared the number of variations in autistic children's genomes with that of their unaffected siblings and found that children with autism were significantly more likely to have three or more different kinds of genetic variations.

Evan E. Eichler, PhD, the lead author of the study, said, “In five to 10 years, whole genome sequencing could be the most informative tool for autism diagnosis. Children with autism were significantly more likely to have three or more different kinds of genetic variations and that suggests that a combination of sporadic genetic variations could contribute to autism.” The study was published on September 28, 2017, in the journal Cell.

Related Links:
Howard Hughes Medical Institute


New
Gold Member
Genetic Type 1 Diabetes Risk Test
T1D GRS Array
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Clinical Chemistry System
P780
Laboratory Software
ArtelWare
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Immunology

view channel
Image: Whole-genome sequencing enables broader detection of DNA repair defects to guide PARP inhibitor cancer therapy (Photo courtesy of Illumina)

Whole-Genome Sequencing Approach Identifies Cancer Patients Benefitting From PARP-Inhibitor Treatment

Targeted cancer therapies such as PARP inhibitors can be highly effective, but only for patients whose tumors carry specific DNA repair defects. Identifying these patients accurately remains challenging,... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.