We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Specific MicroRNA Identifies Glioblastoma Subtypes

By LabMedica International staff writers
Posted on 26 Jul 2017
Print article
Image: A diagram of microRNA-mediated dynamic bidirectional shift between the subclasses of glioblastoma stem-like cells (Photo courtesy of Brigham and Women\'s Hospital).
Image: A diagram of microRNA-mediated dynamic bidirectional shift between the subclasses of glioblastoma stem-like cells (Photo courtesy of Brigham and Women\'s Hospital).
Glioblastoma multiforme (GBM), an extremely aggressive brain cancer, is a very complex disease. It is characterized by a fast-growing tumor in the brain composed of many subpopulations of cells, including glioblastoma stem cells, which play a crucial role in glioblastoma initiation, expansion and therapy-resistance.

Glioblastoma presents unique challenges for treatment because of its heterogeneity, aggressive biological behavior, and diffusive growth. The transcriptomic classification divides primary GBM tumors into different subtypes, including classical (C), mesenchymal (M), and proneural (P). A specific microRNA has been examined by to help identify glioblastoma subtypes and to determine if altering the microRNA's presence in glioblastoma cells could change the tumor's subtype.

Scientists at the Brigham and Women's Hospital, Harvard Medical School (Boston, MA, USA) identified different glioblastoma subtypes is by looking at the specific microRNA expressed in the patient derived GBM stem cells. In several types of cancer cells, including glioblastoma cells, microRNA expression is not regulated properly. The team characterized the expression of the subtype-enriched microRNA-128 (miR-128) in transcriptionally and phenotypically diverse subpopulations of patient-derived glioblastoma stem-like cells.

The team identified the "proneural" subtype as having high levels of miR-128 compared to the mesenchymal tumors, which had significantly lower levels of this particular microRNA. Interestingly, they also found that if they raised or lowered the levels of miR-128, they could induce one subtype of tumor to transition into a new subtype. The team concluded that their results provide a comprehensive overview of the dynamic spectrum of cellular subpopulations in glioblastoma, which is critical for establishing more faithful models and for advancing therapeutic strategies that will be capable of overcoming the complexity of this disease, which is currently one of the leading causes of treatment failure in glioblastoma patients.

Agnieszka M. Bronisz, PhD, an Assistant Professor of Neurosurgery and the corresponding author of the study said, “Mesenchymal glioblastoma is extremely aggressive, highly heterogeneous and has the poorest chance of survival for patients. By altering the level of miR-128 in both mesenchymal and proneural tumors, we can shift the tumor into a more hybrid type, similar to the "classical" subtype which is more homogenous and easier to treat.” The study was published on June 6, 2017, in the journal Cell Reports.

Related Links:
Brigham and Women's Hospital

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.