We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Events

09 Apr 2024 - 12 Apr 2024
15 Apr 2024 - 17 Apr 2024
23 Apr 2024 - 26 Apr 2024

Methods Assessed for Detecting Asymptomatic Malaria

By LabMedica International staff writers
Posted on 03 May 2017
Print article
Image: The ABI 7500 Fast Dx real-time PCR instrument (Photo courtesy of Applied Biosystems).
Image: The ABI 7500 Fast Dx real-time PCR instrument (Photo courtesy of Applied Biosystems).
Asymptomatic malaria infection refers to malarial parasitemia of any density in the absence of fever or other acute symptoms in individuals who have not received recent antimalarial treatments.

Sensitive methods for detecting asymptomatic malaria infections are essential for identifying potential transmission reservoirs and obtaining an accurate assessment of malaria epidemiology in low-endemicity areas aiming to eliminate malaria. Polymerase chain reaction (PCR) techniques to detect parasite nucleic acids (DNA or RNA) are among the most commonly used molecular methods.

Scientists at China Medical University and their colleagues recruited 1,005 healthy individuals (344 males and 661 females, ages 1–82 years) living in Kachin Sate, Myanmar between May and November, 2015. Two fingerprick samples were taken, one was processed in a nearby field laboratory, and the other on filter paper, dried and stored. The study compared three molecular detection methods side-by-side, namely nested PCR targeting the ribosomal ribonucleic acid (rRNA) genes, nested RT-PCR to detect parasite rRNA, and capture and ligation probe-PCR (CLIP-PCR) to detect parasite RNA.

Thick and thin blood films stained with Giemsa were prepared and read. For positive slides, parasite density was quantified in 500 white blood cells (WBCs) on thick blood films assuming that 1 µL of blood contains 8,000 WBCs. Total RNA and genomic DNA were extracted from peripheral blood samples. Modified nested PCR (nD-PCR) was performed based on the 18S rRNA gene. For the CLIP-PCR 3-mm circle of dried blood spot on 3 M Whatman filter paper was punched out and lysed with 100-µL lysis mixture. Two RT-PCR methods were used to detect Plasmodium vivax gametocytes in samples. For detection of P. vivax gametocytes in all 1,005 samples, the 645 bp full-length Pvs25 gene was amplified using Pvs25-specific primers. Amplification and detection were performed on an ABI 7500 apparatus.

Light microscopy detected Plasmodium infections in only 1.19% of the residents harboring the parasites. CLIP-PCR had slightly better performance and detected Plasmodium infections in 1.89% of the population. Further improvement was achieved by nested PCR to detect parasite DNA, which detected P. vivax and P. falciparum infections in 2.39% of the residents. The nested RT-PCR targeting rRNA, however, detected as many as 187 (18.61%) individuals having Plasmodium infections with P. vivax being the predominant species (176 P. vivax, five P. falciparum and six P. falciparum/P. vivax mixed infections). Of the 210 Plasmodium-positive samples detected by all molecular methods, 115 were Pvs25-positive by quantitative polymerase chain reaction (qRT-PCR), indicating that a large proportion of asymptomatic individuals were gametocyte carriers.

The authors concluded that Nested RT-PCR based on the detection of asexual-stage parasite rRNA was the most sensitive, with a more than six-fold higher sensitivity than the other two molecular methods of parasite detection. CLIP-PCR has an increased throughput, but its sensitivity in this study was much lower than those of other molecular methods. The study was published on April 20, 2017, in the Malaria Journal.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.