We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Genetic Drivers Discovered for DiGeorge Syndrome Kidney Defects

By LabMedica International staff writers
Posted on 10 Feb 2017
Print article
Image: A diagram depicting the deletion and some of the genes in the DiGeorge syndrome locus (Photo courtesy of Genetics 4 Medics).
Image: A diagram depicting the deletion and some of the genes in the DiGeorge syndrome locus (Photo courtesy of Genetics 4 Medics).
DiGeorge syndrome is a chromosomal disorder that can lead to malformations in multiple organs and it is the most common microdeletion syndrome, in which a portion of a chromosome is missing.

The DiGeorge syndrome is a debilitating, multisystemic condition that features, with variable expressivity, cardiac malformations, velopharyngeal insufficiency, hypoparathyroidism with hypocalcemia, and thymic aplasia with immune deficiency.

A large team of scientists led by those at Columbia University Medical Center performed genomic analyses in 2,666 children with congenital anomalies of the kidney and urinary tract which is the largest pediatric cohort of these disorders, and 22,094 controls to identify structural variants associated with these defects. They performed genomewide genotyping for analysis of copy-number variation by means of high-density single-nucleotide polymorphism (SNP) microarrays.

They performed high-throughput next-generation sequencing for eight genes in the 370-kb minimal region of overlap for the DiGeorge syndrome in samples obtained from an additional 526 patients using microfluidic polymerase-chain-reaction capture coupled with next-generation sequencing on the 2500 HiSeq system.

The scientists’ analysis identified deletions at the terminal portion of the 22q11.2 DiGeorge locus as the second most common microdeletion in patients with kidney malformations. This study mapped the candidate gene for kidney disease in DiGeorge syndrome to a smaller region containing only nine genes. The team resequenced all genes included in the critical 22q11.2 region identified five out of 586 patients with kidney and urinary tract defects that had novel heterozygous protein-altering variants, including a premature termination codon, in CRK-Like Proto-Oncogene, Adaptor Protein gene (CRKL). Inactivation of the same gene in mouse embryos finally proved its role as the main driver.

Simone Sanna-Cherchi, MD, an assistant professor of medicine and senior author of the study said, “This study represents a critical step forward in understanding the genetic basis of congenital kidney defects associated with DiGeorge syndrome and in the general population. Expanding our knowledge of the genetics of kidney development and malformations will give us additional tools needed to diagnose this variant of DiGeorge syndrome and gives us a potential therapeutic target.” The study was published on January 25, 2017, in The New England Journal of Medicine.

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Pipet Controller
Stripettor Pro
New
HbA1c Test
HbA1c Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The GlycoLocate platform uses multi-omics and advanced computational biology algorithms to diagnose early-stage cancers (Photo courtesy of AOA Dx)

AI-Powered Blood Test Accurately Detects Ovarian Cancer

Ovarian cancer ranks as the fifth leading cause of cancer-related deaths in women, largely due to late-stage diagnoses. Although over 90% of women exhibit symptoms in Stage I, only 20% are diagnosed in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Technology

view channel
Image: The new algorithms can help predict which patients have undiagnosed cancer (Photo courtesy of Adobe Stock)

Advanced Predictive Algorithms Identify Patients Having Undiagnosed Cancer

Two newly developed advanced predictive algorithms leverage a person’s health conditions and basic blood test results to accurately predict the likelihood of having an undiagnosed cancer, including ch... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.