We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Genetic Cause of Childhood Leukemia Identified

By LabMedica International staff writers
Posted on 26 Sep 2013
A genetic link to the risk of childhood acute lymphoblastic leukemia (ALL) has been identified and testing for this mutation may allow affected families to prevent leukemia in future generations. More...


A series of molecular tests, including exome sequencing and single nucleotide polymorphism arrays, have been conducted to confirm that the observed mutation compromised the normal function of the gene, but which may increase the risk of developing ALL.

Scientists at the Memorial Sloan-Kettering Cancer Center (New York, NY, USA) and other institutions first observed the mutation in a family treated at Memorial Sloan-Kettering of which several family members of different generations had been diagnosed with childhood ALL. A second, nonrelated, leukemia-prone family cared for at a different hospital was later found to have the same mutation.

The inherited genetic mutation is located in a gene called paired box gene 5 (PAX5) and also known as B-cell lineage specific activator protein (BSAP), which is known to play a role in the development of some B cell cancers, including ALL. PAX5 is a transcription factor or "master gene," that regulates the activity of several other genes and is essential for maintaining the identity and function of B cells. In all study participants, one of the two copies of the PAX5 gene was missing, leaving only the mutated version. Leukemic cells from all affected individuals in both families exhibited 9p deletion, with loss of heterozygosity and retention of the mutant PAX5 allele at 9p13.

The authors of the study hope that ongoing studies will also determine what percentage of childhood ALL patients have the PAX5 mutation. Current estimates suggest that it is rare. Additionally, the newly discovered gene mutation may someday help scientists determine how to target transcription factors to treat other noninherited forms of leukemia where the PAX5 mutation is present. ALL is the most common form of cancer in children, with 3,000 children and young adults being diagnosed each year in the USA.

Kenneth Offit, MD, MPH, a senior author of the study said, “At the very least this discovery gives us a new window into inherited causes of childhood leukemia. More immediately, testing for this mutation may allow affected families to prevent leukemia in future generations. With a better understanding of the genetic elements that induce cancer susceptibility, or drive cancer to grow, we can more precisely target therapy as well as potentially prevent cancer from occurring in the first place.” The study was published on August 9, 2013, in the journal Nature Genetics.

Related Links:
Memorial Sloan-Kettering Cancer Center




New
Gold Member
Immunochromatographic Assay
CRYPTO Cassette
POC Helicobacter Pylori Test Kit
Hepy Urease Test
New
Clinical Chemistry System
P780
New
Silver Member
Rapid Test Reader
DIA5000
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: New research points to protecting blood during radiation therapy (Photo courtesy of 123RF)

Pioneering Model Measures Radiation Exposure in Blood for Precise Cancer Treatments

Scientists have long focused on protecting organs near tumors during radiotherapy, but blood — a vital, circulating tissue — has largely been excluded from dose calculations. Each blood cell passing through... Read more

Immunology

view channel
Image: The test could streamline clinical decision-making by identifying ideal candidates for immunotherapy upfront (Xiao, Y. et al. Cancer Biology & Medicine July 2025, 20250038)

Blood Test Predicts Immunotherapy Efficacy in Triple-Negative Breast Cancer

Triple-negative breast cancer (TNBC) is an aggressive subtype lacking targeted therapies, making immunotherapy a promising yet unpredictable option. Current biomarkers such as PD-L1 expression or tumor... Read more

Microbiology

view channel
Image: New diagnostics could predict a woman’s risk of a common sexually transmitted infection (Photo courtesy of 123RF)

New Markers Could Predict Risk of Severe Chlamydia Infection

Chlamydia trachomatis is a common sexually transmitted infection that can cause pelvic inflammatory disease, infertility, and other reproductive complications when it spreads to the upper genital tract.... Read more

Technology

view channel
Image: The sensor can help diagnose diabetes and prediabetes on-site in a few minutes using just a breath sample (Photo courtesy of Larry Cheng/Penn State)

Graphene-Based Sensor Uses Breath Sample to Identify Diabetes and Prediabetes in Minutes

About 37 million U.S. adults live with diabetes, and one in five is unaware of their condition. Diagnosing diabetes often requires blood draws or lab visits, which are costly and inconvenient.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.