We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Novel Assay Developed for Evaluating Fragile X Locus Repeats

By LabMedica International staff writers
Posted on 19 Jan 2012
A novel fragile X locus repeat assay has been developed that is a simple and high-throughput method that, with clinical validation, may be suitable for screening. More...


The assay uses amplification of the fragile X mental retardation 1 (FMR1) trinucleotide repeat region, followed by a hybridization assay to quantify the number of repeats in the amplicons.

Scientists working in Molecular Diagnostics at PerkinElmer Health Sciences (Waltham, MA, USA) have developed the first repeat-counting assay that uses fluorescent signals rather than electrophoresis or mass spectrometry as the signaling mechanism. They also developed a simple microfluidic electrophoresis reflex test that uses the same amplicons and reduces the need for Southern blots to differentiate homozygous female normal samples from full mutations.

The assay was tested on DNA from 1,008 dried blood spot samples from pregnant women in their first trimester. Reflex testing was performed on the 2100 Bioanalyzer (Agilent Technologies; Santa Clara, CA, USA), a compact microfluidic capillary electrophoresis platform, using the Agilent Technologies DNA 7500 kit. Before electrophoresis, the polymerase chain reaction (PCR) products were first purified using the PureLink PCR kit (Invitrogen; Grand Island, NY, USA).

The hybridization assay identified 51 of those as potentially expanded alleles of equal to or greater than 45 repeats or as intermediate or higher in FMR1 repeat classification. Of these screen-positive samples, eight were confirmed by microfluidic electrophoresis as premutations consisting of equal to or greater than 55 repeats. Results for the PCR and hybridization assay are obtained in less time than an eight-hour shift, and the confirmation electrophoresis of screen-positive results takes approximately an additional two hours. All manipulations for the PCR and hybridization assay are performed in microplates and can be performed with a multichannel pipette for high throughput, with the prospect for straightforward automation.

The Luminex 200 (Austin, TX, USA) suspension array system reads the fluorescence results of the hybridization assay unattended. The ratios of fluorescent signals indicative of the repeat length are simple to calculate and embody into software, and no visual interpretations of electropherograms are needed for the approximately 95% of samples that will assay as screen assay negative in most screening settings. The authors concluded that their preliminary results suggest that the assay is a reasonable candidate for screening maternal samples for premutation yes-no status. With appropriate clinical validation, this assay will enable high-throughput, low-cost, low-investment screening. The study was published in the November 2011 issue of the Journal of Molecular Diagnostics.

Related Links:

PerkinElmer Health Sciences
Agilent Technologies
Invitrogen




Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
ESR Analyzer
TEST1 2.0
Clinical Chemistry System
P780
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: Residual leukemia cells may predict long-term survival in acute myeloid leukemia (Photo courtesy of Shutterstock)

MRD Tests Could Predict Survival in Leukemia Patients

Acute myeloid leukemia is an aggressive blood cancer that disrupts normal blood cell production and often relapses even after intensive treatment. Clinicians currently lack early, reliable markers to predict... Read more

Pathology

view channel
Image: The AI tool advances precision diagnostics by linking genetic mutations directly to disease types (Photo courtesy of Shutterstock)

AI Tool Simultaneously Identifies Genetic Mutations and Disease Type

Interpreting genetic test results remains a major challenge in modern medicine, particularly for rare and complex diseases. While existing tools can indicate whether a genetic mutation is harmful, they... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.