We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
ZeptoMetrix an Antylia scientific company

Download Mobile App




Events

02 Jun 2025 - 04 Jun 2025
11 Jun 2025 - 13 Jun 2025

Influenza Array to Study Genetic Drift of H1N1 Swine Flu

By LabMedica International staff writers
Posted on 12 Nov 2009
A U.S. More...
Army medical center is using a new influenza detection system to analyze influenza cases, including those involving H1N1 swine flu.

CombiMatrix Corp. (Mukilteo, WA, USA) announced that Brooke Army Medical Center (BAMC; San Antonio, CA, USA) is using the CombiMatrix influenza detection array. Brooke Army Medical Center (BAMC; San Antonio, TX, USA) is a military hospital that is investigating the feasibility of screening all patients presenting in its emergency room with symptoms of respiratory distress and consenting to nasal swabs, by both electrochemical array-based diagnostics and bead-based multiplex fluorescent methods.

While there are other flu tests including the fluorescent test used at BAMC that can identify the presence or absence of H1N1 swine flu, they do not provide information on genetic drift of the virus. It is important to understand the genetic drift of rapidly mutating pathogens in general and of swine flu in particular because of the potential for increased pathogenicity of a mutated virus.

Worldwide, there are already several hundred thousand confirmed cases, and the World Health Organization (Geneva, Switzerland) has declared a pandemic. Although some of these estimates might be high, the numbers distinctly indicate that this viral disease is a major public health concern. Because swine flu can be a rapidly mutating virus, concerns exist about mutations that might make it more pathogenic while maintaining its highly infectious nature.

"We are pleased to be working with BAMC to evaluate the genetic drift of the swine flu virus,” stated Dr. Amit Kumar, president and CEO of CombiMatrix. "Our influenza array has demonstrated its ability to provide tremendous genetic information regarding numerous infectious agents including bird flu, swine flu, and other infectious agents. It is especially significant to note that our influenza detection system was developed with funding from the U.S. Department of Defense, and it is now being used to evaluate infections in military, former-military, and government personnel. Also, we encourage interested parties to review information on the website of the U.S. Centers for Disease
Control and Prevention [CDC; Atlanta, GA, USA] to get an understanding of the limitations of currently available flu tests, especially what we feel is poor performance of many rapid flu tests,” concluded Dr Kumar. The link for this information is as follows given below.

According to Dr. Gerald Merrill, laboratory director for the department of clinical investigation at BAMC, "We are already seeing a high percentage of novel H1N1 flu cases in the San Antonio military community this season. The CombiMatrix system allows us to screen for Swine flu versus seasonal influenza A and influenza B. Samples analyzed using the CombiMatrix system from last season allowed us to look at clustering of genotypes and to see patterns suggesting genetic drift in both the novel H1N1 swine flu virus and the seasonal influenza A virus in San Antonio. This can be useful in spotting divergence of strains and possibly, in identifying problems earlier than if we did not screen for such divergence,” concluded Dr. Merrill.

CombiMatrix is a biotechnology business that develops proprietary technologies, including products and services in the areas of drug development, genetic analysis, molecular diagnostics, nanotechnology, and defense and homeland security markets, as well as in other potential markets where our products and services could be utilized. The technologies the company has developed include a platform technology to rapidly produce user-defined, in situ synthesized, oligonucleotide arrays for use in identifying and determining the roles of genes, gene mutations, and proteins. This technology has a wide range of potential applications in the areas of genomics, proteomics, biosensors, drug discovery, drug development, diagnostics, combinatorial chemistry, material sciences, and nanotechnology. Other technologies include proprietary molecular synthesis and screening methods for the discovery of potential new drugs.

Related Links:

CombiMatrix
CDC Guidance for Diagnostic tests



Gold Member
Veterinary Hematology Analyzer
Exigo H400
Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
New
Glucose Tolerance Test
NERL Trutol
New
Mini Vortex Mixer
Vornado
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Hematology

view channel
Image: CitoCBC is the world first cartridge-based CBC to be granted CLIA Waived status by FDA (Photo courtesy of CytoChip)

Disposable Cartridge-Based Test Delivers Rapid and Accurate CBC Results

Complete Blood Count (CBC) is one of the most commonly ordered lab tests, crucial for diagnosing diseases, monitoring therapies, and conducting routine health screenings. However, more than 90% of physician... Read more

Immunology

view channel
Image: Custom hardware and software for the real-time detection of immune cell biophysical signatures in NICU (Photo courtesy of Pediatric Research, DOI:10.1038/s41390-025-03952-y)

First-Of-Its-Kind Device Profiles Newborns' Immune Function Using Single Blood Drop

Premature infants are highly susceptible to severe and life-threatening conditions, such as sepsis and necrotizing enterocolitis (NEC). Newborn sepsis, which is a bloodstream infection occurring in the... Read more

Pathology

view channel
Image: The new tool is designed for accurate detection of structural variations in clinical samples (Photo courtesy of Karen Arnott/EMBL-EBI and Isabel Romero Calvo/EMBL)

ML Algorithm Accurately Identifies Cancer-Specific Structural in Long-Read DNA Sequencing Data

Long-read sequencing technologies are designed to analyze long, continuous stretches of DNA, offering significant potential to enhance researchers' abilities to detect complex genetic changes in cancer genomes.... Read more

Technology

view channel
Image: Concept of biosensor integrated into hygiene pads enabling direct semi-quantitative analysis of biomarkers in unprocessed menstruation blood (Photo courtesy of Dosnon, L et al. DOI: 10.1002/advs.202505170)

First Ever Technology Recognizes Disease Biomarkers Directly in Menstrual Blood in Sanitary Towels

Over 1.8 billion people menstruate worldwide, yet menstrual blood has been largely overlooked in medical practice. This blood contains hundreds of proteins, many of which correlate with their concentration... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.