We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Enterovirus Antibodies Detected in Acute Flaccid Myelitis Patients

By LabMedica International staff writers
Posted on 28 Aug 2019
Print article
Image: The CFX96 Touch RT-PCR detection system (Photo courtesy of Bio-Rad Laboratories).
Image: The CFX96 Touch RT-PCR detection system (Photo courtesy of Bio-Rad Laboratories).
Neurotropic enteroviruses (EVs), such as poliovirus, have long been associated with paralytic disease. Acute flaccid myelitis (AFM) has caused motor paralysis in more than 560 children in the United States since 2014.

AFM presents with acute flaccid weakness in one or more limbs with depressed tendon reflexes. Some patients have cranial nerve abnormalities, including facial weakness, dysarthria, or dysphagia. The temporal association of enterovirus (EV) outbreaks with increases in AFM cases and reports of fever, respiratory, or gastrointestinal illness prior to AFM in more than 90% of cases suggest a role for infectious agents.

Scientists at Columbia University (New York, NY, USA) and their colleagues selected a subset of samples (based largely on available cerebrospinal fluid (CSF) volumes) from AFM cases with onset in 2018, including 13 children and one adult. Three groups of controls were included: (i) five patients with non-AFM CNS diseases collected during a similar time period as the AFP cases (non-AFM CNS control group [NAC] group; all except one were children), (ii) 10 children with Kawasaki disease (Kawasaki disease control [KDC] group), and (iii) 11 adults with non-AFM CNS diseases. Paired CSF and serum samples were available for 11 children with AFM, two children from the NAC group, eight children from the KDC group, and five adults from the AC group.

The team used a new tool they developed called VirCapSeq-VERT, which can detect any viral genetic material that is at least 60% like that of any known vertebrate virus. The quantitative real time polymerase chain reaction (qRT-PCR) assay was performed on Bio-Rad Touch-CFX 96 real-time PCR instrument. They found enteroviral genetic material (EV-A71) in only the one adult AFM case and genetic material from another enterovirus (echovirus 25) in one of the non-AFM cases. The investigators also sought indirect evidence of enterovirus infection by looking for antibodies to enteroviruses made by the immune system in response to an infection. The team developed a microchip assay, AFM-SeroChip-1, that detects the presence of antibodies generated in response to any human enterovirus (EV-A, EV-B, EV-C or EV-D) infection.

EV-specific antibodies were detected in the CSF of 79% (11 of 14) of the AFM cases. Of those, six samples were positive for EV-D68, strongly indicating that enterovirus had been in the central nervous system, even though it had not been detected by VirCapSeq-VERT. None of the CSF samples from children with Kawasaki disease had antibodies that reacted with any enterovirus.

The authors concluded that while other etiologies of AFM continue to be investigated, their study provides further evidence that EV infection may be a factor in AFM. In the absence of direct detection of a pathogen, antibody evidence of pathogen exposure within the CNS can be an important indicator of the underlying cause of disease. The study was published on August 13, 2019, in the journal mBIO.

Related Links:
Columbia University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: A blood test could predict lung cancer risk more accurately and reduce the number of required scans (Photo courtesy of 123RF)

Blood Test Accurately Predicts Lung Cancer Risk and Reduces Need for Scans

Lung cancer is extremely hard to detect early due to the limitations of current screening technologies, which are costly, sometimes inaccurate, and less commonly endorsed by healthcare professionals compared... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.